Copyright c 2001 ONG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Stiintei Examenul de bacalaureat la
|
|
- Beniamin Tabacu
- 3 ani în urmă
- Vzualizari:
Transcriere
1 Copyright c 1 ONG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Stiintei Examenul de bacalaureat la matematica, Profilurile: fizica-matematica, economie, informatica-matematica Timp alocat: 18 minute Stabiliti carei multimi de numere ii apartine valoarea expresiei. (5 puncte). Fie functiile f : R R, f(x) = x 3x + ; g : R R, g(x) = x 3. Determinati f(g(x)). (4 puncte) 3. Determinati valorile parametrului real a pentru care ecuatia 3 cos x + sin x = a admite radacini. (6 puncte) 4. Determinati lungimea liniei definita de ecuatia x + 5x + y =. (7 puncte) 5. Rezolvati inecuatia D(x), unde D(x) = 1 x x x x 1 (8 puncte) 6. Determinati exponentul puterii la care trebuie ridicat + 3, folosind formula binomului, astfel incat T 3 6 =. (8 puncte) T Calculati integrala 1 3x + 5x + dx. (9 puncte) 8. Centrul cercului inscris intr-un triunghi isoscel imparte inaltimea lui in segmente de lungime, respectiv de, 5 cm si 3 cm. Aflati lungimile laturilor triunghiului. (9 puncte) 9. Sa se determine pentru ce valori ale parametrului real m functia f : R R, f(x) = e x (m 3x x ) este monoton descrescatoare pe R. (1 puncte) 1. Descompuneti in factori ireductibili polinomul P (X) = X X + 36 peste multimea C. (9 puncte) 11. Aria sectiunii diagonale a unei piramide patrulatere regulate este S. O muchie laterala a ei formeaza cu planul bazei piramidei un unghi de masura β. (1 puncte) 1. Determinati toate valorile parametrului real a, pentru care sistemul: admite o singura solutie. (13 puncte) y + ln y y = x y + (x + a) = x + a + 4 Aflati volumul piramidei.
2 Copyright c 1 ONG TCV Scoala Virtuala a Tanarului Matematician Solutii 1. Se observa ca = = obtine = = ( 5) = 5 = 5 si se = 1. Asadar, valoarea expresiei date este un numar natural. Nota: N Z Q R C... (a se vedea si sesiunea 1999).. Se utilizeaza definitia functiei compuse si se obtine f(g(x)) = (x 3) 3(x 3) + = 4x 1x + 9 6x = 4x 18x Ecuatia a sin x + b cos x = c are solutii daca si numai daca c 1 (a se vedea a + b Ecuatii trigonimetrice, metoda unghiului auxiliar). Prin urmare, ecuatia data are solutii doar pentru a 1, de unde a [, ]. 4. Cum x + 5x + y = x + 5 x y = (x + 5 ( ) 5 ) + y =, rezulta ca linia data este o circumferinta de raza R = 5 cu centrul in punctul M ( 5 ; ). Se aplica formula pentru determinarea lungimii circumferintei si se obtine l = πr = π 5 = 5π(un.lungime). 5. Se utilizeaza proprietatile determinantilor si se obtine 1 x x D(x) = x x 1 = x 1 x 1 x 1 = (x 1) x x 1 x x 1 = = (x 1) x + 1 x + 1 = (x 1)(x + 1) 1 1 = (x 1)(x + 1) x + 1 x Inecuatia D(x) devine (x 1)(x + 1). Se rezolva utilizand metoda intervalelor si se obtine x { 1} [ 1 ; + ). 6. Se utilizeaza formula pentru termenul de rang k din dezvoltarea binomului lui Newton (a + b) n : T k+1 = C k na n k b k, (k =, n ) si se obtine T 3 = C n( ) n ( 3) T 4 Cn( 3 ) n 3 ( 3) = C n 1 3 = 3 C 3 n 6 4
3 Copyright c 1 ONG TCV Scoala Virtuala a Tanarului Matematician 3 sau, tinand seama ca C k n = n! k!(n k)!, n(n 1) n(n 1)(n ) 3 de unde rezulta n = 4 si n = Cum integrantul reprezinta o functie rationala, il descompunem in fractii simple (tinand seama ca radacinile trinomului din numitor sunt reale si de multiplicitatea unu): = 3 4, 3x + 5x + = 3 ( ) = A x + 3 (x + 1) 3x + + B x + 1 A(x + 1) + B(3x + ) =. (3x + )(x + 1) Utilizand metoda coeficientilor nedeterminati se obtine A = si B = 3. Asadar ( 3x + 5x + dx = 3x + 3 ) dx dx = x + 1 3x + 3 dx x + 1 = Conform formulei Newton-Leibniz 1 = ln 3x + 3 ln x C. 3 3x + 5x + dx = ( ) 3 1 ln 3x + 3 ln x + 1 = = 3 (ln 5 ln ) 3 ln = 3 ln 1 3 ln. 8. Fie ABC tringhiul isoscel (AB = BC), BD inaltimea (BD AC) O BD centrul cercului inscris in ABC, OB = 5cm, OD = 3cm, si prin urmare BD = 8(cm). Fie E punctul de tangenta a laturii AB cu cercul. Atunci OE AB si prin urmare BOE dreptunghic. Cum OE = OD = 3, BO = 5, conform teoremei Pitagora B E O A D C BE = BO OE = 5 9 = 4(cm).
4 Copyright c 1 ONG TCV Scoala Virtuala a Tanarului Matematician 4 Cum triunghiurile dreptunghice BOE si ABD sunt asemenea ( B comun), rezulta: AB BO = BD BE = AD OE, de unde BO BD AB = = 5 8 = 1(cm), BE 4 BD OE AD = = 8 3 = 6(cm). BE 4 Cum BD inaltimea coborata pe baza tringhiului isoscel ABC, rezulta BD mediana si AC = AD = 1(cm). Asadar AB = BC = 1cm, AC = 1cm. 9. Functia f : X R, X R este monoton descrescatoare pe X daca f (x) pentru orice x X. Rezulta f (x) = e x (m 3x x ) + e x ( 3 x) = e x (x + 5x m + 3). Cum e x > pentru orice x R, inecuatia devine x + 5x m + 3. Ultima inecuatie va avea solutii x R daca si numai daca discriminantul inecuatiei este nepozitiv (a se vedea Formule, Dictionare, Trinomul patrat). Asadar: 5 4(3 m), de unde m Se considera ecuatia bipatrata x x + 36 =, solutiile careia (in multimea numerelor complexe) sunt x 1 = i, x = i, x 3 = 3i, x 4 = 3i. Prin urmare X X + 6 = (X + i)(x i)(x + 3i)(X 3i). 11. S D C O A B Fie SABCD piramida patrulaterala regulata (ABCD patrat), aria SAC = S, SAC = β, O centrul patratului ABCD. Fie AO = a. Atunci AC = a; SO = AO tg β = = a tg β (din triunghiul dreptunghic SAO) si aria triunghiului SAC S = 1 AC SO = 1 a a tg β = a tg β
5 Copyright c 1 ONG TCV Scoala Virtuala a Tanarului Matematician 5 de unde a = S ctg β si a = S ctg β. Prin urmare AB = a + a = a = S ctg β (aria bazei piramidei), SO = a tg β = S ctg β tg β (inaltimea piramidei) si V = 1 3 S ABCD SO = 3 S ctg β S ctg β tg β = 3 S S ctg β(un.cub.) 1. Din prima ecuatie a sistemului rezulta y = x si x > (expresia ln y este definita doar y pentru y > a se vedea Formule, Dictionare, Modul). Atunci a doua ecuatie devine Ultima ecuatie are solutie unica daca: (x + a) = a + 4 sau x + ax + a a =. D = 4a 4(a a ) = a = si x = (x > ) si o singura solutie pozitiva, daca a a <, { a a =, a > de unde a [ 1; ). Asadar, a { } [ 1, ).
Microsoft Word - Programa finala olimpiadei matematica 2007 gimnaziu.doc
ROMÂNIA MINISTERUL EDUCAŢIEI ŞI CERCETĂRII DIRECŢIA GENERALĂ ÎNVĂŢĂMÂNT PREUNIVERSITAR SERVICIUL NAŢIONAL DE EVALUARE ŞI EXAMINARE PROGRAMA OLIMPIADEI DE MATEMATICĂ CLASELE V XII AN ŞCOLAR 006 / 007 Pentru
Gheorghe IUREA Adrian ZANOSCHI algebră geometrie clasa a VII-a ediţia a V-a, revizuită mate 2000 standard EDITURA PARALELA 45 Matematică. Clasa a VII-
Gheorghe IUREA Adrian ZANOSCHI algebră geometrie clasa a VII-a ediţia a V-a, revizuită mate 2000 standard 3 Algebră Capitolul I. MULŢIMEA NUMERELOR RAŢIONALE Identificarea caracteristicilor numerelor raţionale
PROGRAMA CONCURSULUI NAŢIONAL
ANUL ŞCOLAR 2011-2012 CLASA a IX-a În programa de concurs pentru clasa a IX-a sunt incluse conţinuturile programelor din clasele anterioare şi din etapele anterioare. 1. Mulţimi şi elemente de logică matematică.
Universitatea Politehnica din Bucureşti 2019 Disciplina: Geometrie şi Trigonometrie G1 * Varianta A 1. Ştiind cos x = 3 2, atunci sin2 x
1 5 6 7 Universitatea Politehnica din Bucureşti 019 Disciplina: Geometrie şi Trigonometrie G1 * Varianta A 1 Ştiind cos x atunci sin x este: (6 pct a 1 ; b 1 ; c 1 ; d ; e 1 8 ; f Soluţie Folosind prima
CONCURSUL NAŢIONAL DE MATEMATICA PANAITOPOL EDIŢIA a X-a, TULCEA, 21 aprilie 2018 Clasa a VII - a 1. Se consideră numerele reale x, y şi z, cel puţin
CONCURSUL NAŢIONAL DE MATEMATICA PANAITOPOL EDIŢIA a X-a, TULCEA, 21 aprilie 2018 Clasa a VII - a 1. Se consideră numerele reale x, y şi z, cel puţin două dintre ele fiind diferite. Arătaţi că x y z 0
CERCURI REMARCABILE ASOCIATE UNUI TRIUNGHI CERCURI EXÎNSCRISE Natura vorbeşte în limbajul matematicii: literele acestei limbi sunt cercuri, tri
CERCURI REMARCABILE ASOCIATE UNUI TRIUNGHI 19 3. CERCURI EXÎNSCRISE Natura vorbeşte în limbajul matematicii: literele acestei limbi sunt cercuri, triunghiuri şi alte guri geometrice. Galileo Galilei 3
Microsoft Word - D_ MT1_II_001.doc
,1 SUBIECTUL II (30p) Varianta 1001 a b 1 Se consideră matricea A = b a, cu a, b şi 0 http://wwwpro-matematicaro a) Să se arate că dacă matricea X M ( ) verifică relaţia AX = XA, atunci există uv,, astfel
Clasa IX 1. O lăcustă face salturi, fiecare salt în linie dreaptă şi de două ori mai lung ca precedentul. Poate vreodată lăcusta să revină în punctul
Clasa IX. O lăcustă face salturi, fiecare salt în linie dreaptă şi de două ori mai lung ca precedentul. Poate vreodată lăcusta să revină în punctul de plecare iniţial? Soluţie. Răspunsul este negativ.
BAC 2007 Pro Didactica Programa M1 2 Rezolvarea variantei 61 versiune finală Redactia Pro Didactica Suportul pe net:
BAC 7 Pro Didactica Programa M Rezolvarea variantei 6 versiune finală Redactia Pro Didactica Suportul pe net: http://www./ CAPITOLUL Varianta 6. Subiectul I. (a) Coordonatele punctelor C şi D satisfac
DAN LASCU ADRIANA-LIGIA SPORIŞ ANDA OLTEANU PAUL VASILIU MATEMATICĂ. CULEGERE DE PROBLEME TIP GRILĂ PENTRU ADMITEREA ÎN ACADEMIA NAVALĂ MIRCEA CEL BĂT
DAN LASCU ADRIANA-LIGIA SPORIŞ ANDA OLTEANU PAUL VASILIU MATEMATICĂ. CULEGERE DE PROBLEME TIP GRILĂ PENTRU ADMITEREA ÎN ACADEMIA NAVALĂ MIRCEA CEL BĂTRÂN Colecţia Matematică DAN LASCU ADRIANA-LIGIA SPORIŞ
OLM_2009_barem.pdf
Ministerul Educaţiei, Cercetării şi Inovării Societatea de Ştiinţe Matematice din Romania Olimpiada Naţională de Matematică Etapa finală, Neptun Mangalia, 13 aprilie 2009 CLASA A VII-a, SOLUŢII ŞI BAREMURI
Matematica VI
There are no translations available. Datorita unor probleme tehnice, site-ul nu poate fi vizionat cu Internet Explorer 8, partea de teste (apare pagina alba). Pentru navigare, va recomandam Chrome, Mozilla,
Coordonate baricentrice Considerăm în plan un triunghi ABC şi un punct Q în interiorul său, fixat arbitrar. Notăm σ c = aria ( QAB) σ a = aria ( QBC),
Coordonate baricentrice Considerăm în plan un triunghi ABC şi un punct Q în interiorul său, fixat arbitrar Notăm σ c = aria ( QAB) = aria ( QBC), = aria ( QCA) şi σ = aria ( ABC), astfel încât σ = + +
Microsoft Word - Concursul SFERA.doc
CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ SFERA EDIŢIA a II-a BĂILEŞTI, 1 martie 005 CLASA a IV-a Pentru întrebările 1-5 scrieţi pe lucrare litera corespunzătoare răspunsului corect 1. Care este numărul care
www. didactic.ro Aplicaţii ale trigonometriei în geometrie Trecem în revistă următoarele rezultate importante: 1) Teorema sinusurilor: Teorema cosinus
Aplicaţii ale trigonometriei în geometrie Trecem în revistă următoarele rezultate importante: 1) Teorema sinusurilor: Teorema cosinusurilor: Fiind dat triunghiul ABC, vom folosi următoarele notaţii:,,
Pachete de lecţii disponibile pentru platforma AeL
Pachete de lecţii disponibile pentru platforma AeL -disciplina Matematică- Nr. crt Nume pachet clasa Nr. momente Nr.Recomandat de ore 1 Corpuri geometrice V 6 1 2 Fracţii V 14 5 3 Măsurarea lungimilor.
I
METODA VECTORIALĂ ÎN GEOMETRIE prof. Andrei - Octavian Dobre Această metodă poate fi descrisă după cum urmează: Fiind dată o problemă de geometrie, după explicitarea şi reprezentarea grafică a configuraţiei
CONCURSUL NAŢIONAL DE MATEMATICA PANAITOPOL EDIŢIA a X-a, TULCEA, 21 aprilie 2018 Clasa a VII - a Soluţii orientative şi bareme Problema 1. Se conside
CONCURSUL NAŢIONAL DE MATEMATICA PANAITOPOL EDIŢIA a X-a, TULCEA, 1 aprilie 18 Clasa a VII - a Soluţii orientative şi bareme Problema 1. Se consideră numerele reale x, y şi z, cel puţin două dintre ele
BAC 2007 Pro Didactica Programa M1 2 Rezolvarea variantei 36 versiune finală Redactia Pro Didactica Suportul pe net:
BAC 27 Pro Didactica Programa M1 2 Rezolvarea variantei 36 versiune finală Redactia Pro Didactica Suportul pe net: http://www./ CAPITOLUL 1 Varianta 36 1. Subiectul I. (a) Avem 2 ( ) 2+ ( ) 2= 7i = 2 7
Microsoft Word - Programa_Evaluare_Nationala_2011_Matematica.doc
C E N T R U L NAłIONAL DE EVALUARE ŞI E X A M I N A R E PROGRAMA PENTRU DISCIPLINA MATEMATICĂ EVALUAREA NAłIONALĂ PENTRU ELEVII CLASEI A VIII A Pagina 1 din 5 PROGRAMA PENTRU DISCIPLINA MATEMATICĂ I. STATUTUL
Inspectoratul Şcolar Judeţean Suceava Şcoala Gimnazială Luca Arbure CONCURSUL DE MATEMATICǍ ISTEŢII D ARBORE EDIŢIA a VIII a 29 APRILIE 2017 Clasa a I
Clasa a IV a 1. Rezultatul calculului : 8 + [40 + 8 (00 : 5 7 : )] 0 este A) 0 B) C) 4 D) 8. Valoarea lui x din egalitatea [( x + 60 : ) + 4] 5 = 1985este : A) 1 B) 5 C) 1 D) 10. Suma dintre jumatatea
Microsoft Word - Matematika_kozep_irasbeli_javitasi_0911_roman.doc
Matematika román nyelven középszint 0911 ÉRETTSÉGI VIZSGA 011. május. MATEMATIKA ROMÁN NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Indicaţii
Teoreme cu nume 1. Problema (Năstăsescu IX, p 147, propoziţia 5) Formula lui Chasles Pentru orice puncte M, N şi P avem MN + NP = MP.
Teoreme cu nume Problema (Năstăsescu IX, p 47, propoziţia 5) Formula lui hasles Pentru orice puncte M, N şi P avem MN + NP = MP 2 Problema (Năstăsescu IX, p 68, teoremă) Vectorul de poziţie al centrului
clasa I Se recomandă citirea enunţurilor de către învăţător. 1. Continuă numărarea şi află câţi morcovi a mâncat iepuraşul. 6, 7, 8, 9,. A) 3 B) 10 C)
clasa I Se recomandă citirea enunţurilor de către învăţător.. Continuă numărarea şi află câţi morcovi a mâncat iepuraşul. 6, 7, 8, 9,. A) B) 0 C) D) 9 E). Vecinul mai mic al numărului 70 este: A) 60 B)
joined_document_27.pdf
INSPECTORATUL ȘCOLAR JUDEȚEAN GORJ OLIMPIADA NAȚIONALĂ DE MATEMATICĂ ETAPA LOCALĂ, CLASA a V - a FEBRUARIE 014 a). Pe un stadion intră la un meci un număr de persoane după următoarea regulă: în primul
CONCURSUL DE MATEMATICĂ APLICATĂ "ADOLF HAIMOVICI" ETAPA JUDEȚEANĂ 18 martie 2017 Filiera Tehnologică : profilul Tehnic Clasa a IX -a Problema 1. 2 Se
Clasa a IX -a Se consideră funcţia f : R R, f ( x) x mx 07, unde mr a) Determinaţi valoarea lui m ştiind că f( ), f() şi f () sunt termeni consecutivi ai unei progresii aritmetice b) Dacă f() f(4), să
GHEORGHE PROCOPIUC PROBLEME DE ANALIZĂ MATEMATICĂ ŞI ECUAŢII DIFERENŢIALE IAŞI, 2007
GHEORGHE PROCOPIUC PROBLEME DE ANALIZĂ MATEMATICĂ ŞI ECUAŢII DIFERENŢIALE IAŞI, 7 Cuprins Elemente de teoria spaţiilor metrice 4 Spaţii metrice 4 Mulţimea numerelor reale 8 Şiruri şi serii 5 Şiruri de
Microsoft Word - Matematika_kozep_irasbeli_jav_utmut0513V28_roman.doc
Matematika román nyelven középszint 0513 ÉRETTSÉGI VIZSGA 005. május 8. MATEMATIKA ROMÁN NYELVEN MATEMATICĂ KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA EXAMEN DE BACALAUREAT NIVEL MEDIU Az írásbeli vizsga időtartama:
Matematika román nyelven középszint Javítási-értékelési útmutató 1813 ÉRETTSÉGI VIZSGA május 7. MATEMATIKA ROMÁN NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VI
Matematika román nyelven középszint 83 ÉRETTSÉGI VIZSGA 09. május 7. MATEMATIKA ROMÁN NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Informaţii utile
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB 6 aprilie 2019 Proba scrisă la MATEMATICĂ NOTĂ IM
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB 6 aprilie 219 Proba scrisă la MATEMATICĂ NOTĂ IMPORTANTĂ: 1) Problemele de tip grilă din Partea A pot
CONCURSUL DE MATEMATICǍ ISTEŢII D ARBORE EDIŢIA a X-a - 20 aprilie 2019 Clasa a IV-a BAREM DE CORECTARE ŞI NOTARE SUBIECTUL I Se punctează doar rezult
CONCURSUL DE MATEMATICǍ ISTEŢII D ARBORE EDIŢIA a X-a - 0 aprilie 09 Clasa a IV-a BAREM DE CORECTARE ŞI NOTARE Se punctează doar rezultatul: pentru fiecare răspuns se acordă fie uncte, fie 0 puncte Nu
Examenul de bacalaureat 2012
CENTRUL NAŢIONAL DE EVALUARE ŞI EXAMINARE PROGRAMA DE EXAMEN PENTRU DISCIPLINA MATEMATICĂ BACALAUREAT 2015 PROGRAMA M_tehnologic Filiera tehnologică, profilul servicii, toate calificările profesionale,
Subiecte_funar_2006.doc
Clasa a VIII-a A. 1. Exista numere n Z astfel încât n si n+ sa fie patrate perfecte? (Gheorghe Stoica) A. 2. Se considera A N o multime cu 7 elemente si k N*. Aratati ca ecuatia 4x 2 4ax+b 2 +10k = 0,
Noțiuni matematice de bază
Sistem cartezian definitie. Coordonate carteziene Sistem cartezian definiţie Un sistem cartezian de coordonate (coordonatele carteziene) reprezintă un sistem de coordonate plane ce permit determinarea
Analiz¼a Matematic¼a - Curs 6 M¼ad¼alina Roxana Buneci
Analiz¼a Matematic¼a - Curs 6 M¼ad¼alina Roxana Buneci Cuprins 4 Spaţii topologice (continuare din cursul 5) 3 4.6 Spaţiul R n............................ 3 5 Calcul diferenţial 7 5. Derivatele funcţiilor
MergedFile
PROIECT DIDACTIC Clasa a VII-a Matematică Proiect didactic realizat de Ana-Cristina Blanariu-Șugar, profesor Digitaliada, revizuit de Ioan Popa, profesor Digitaliada Textul și ilustrațiile din acest document
1. Teorema lui Ceva Ene Mihai+Radu Vlad+Budacu Vlad
1. Teorema lui Ceva Ene Mihai+Radu Vlad+Budacu Vlad 2. Teorema lui Menelaus Ciocan Cristian+Cioară Alexandru+Răileanu Daniel 3. Teorema lui Pitagora Paraipan Rareș+Postelnicu Marius+Anghel Mircea
MergedFile
PROIECT DIDACTIC Clasa a VII-a Matematică Proiect didactic realizat de profesor Tatiana Predoană, Fundația Noi Orizonturi, în cadrul programului - pilot Digitaliada, revizuit de Monica Popovici, profesor
20 SUBIECTE DE EXAMEN - De fapt, în pofida acestor probleme, până la urmă tot vom logaritma, căci aceasta este tehnica naturală în context. Trebuie do
SUBIECTE DE EXAMEN - De fapt, în pofida acestor probleme, până la urmă tot vom logaritma, căci aceasta este tehnica naturală în context. Trebuie doar să gestionăm cu precauţie detaliile, aici fiind punctul
MergedFile
PROIECT DIDACTIC Clasa a VII-a Matematică Proiect didactic realizat în cadrul programului - pilot Digitaliada, revizuit de Simona Roșu, profesor Digitaliada Textul și ilustrațiile din acest document începând
Autoevaluare curs MN.doc
Anul II, IEI IFR Semestrul I Metode numerice Chestionar de autoevaluare C1 1 Să se scrie o procedură care să calculeze produsul scalar a doi vectori 2 Să se scrie o procedură de înmulţire a matricelor
RecMat dvi
Probleme propuse 1 P355. Găsiţi trei numere consecutive în şirul numerelor de la 1 la 30 care să aibă suma 30. (Clasa pregătitoare) Mariana Manoli, elevă, Iaşi P356. Colorează figura geometrică care nu
BARAJ NR. 1 JUNIORI FRANŢA ianuarie Fie x şi y două numere întregi astfel încât 5x + 6y şi 6x + 5y să fie pătrate perfecte. Arătaţi că
BARAJ NR. 1 JUNIORI FRANŢA 019 9 ianuarie 019 1. Fie x şi y două numere întregi astfel încât 5x + 6y şi 6x + 5y să fie pătrate perfecte. Arătaţi că x şi y sunt divizibili cu 11.. Fie Γ un cerc de centru
Examenul de bacalaureat 2012
PROGRAMA PENTRU SIMULAREA EXAMENULUI DE BACALAUREAT 2019 LA DISCIPLINA MATEMATICĂ În cadrul examenului de Bacalaureat 2019, Programele de examen la disciplina Matematica se diferenţiază în funcţie de filiera,
Examenul de bacalaureat 2012
INSPECTORATUL Ș C O L A R J U D E Ț E A N C O V A S N A PROGRAMA PENTRU SIMULAREA EXAMENULUI DE BACALAUREAT 2015 LA DISCIPLINA MATEMATICĂ În cadrul examenului de Bacalaureat 2015, Programele de examen
E_c_matematica_M_mate-info_2017_var_02_LRO
Matmatică M_mat-info Toat subictl sunt obligatorii. S acordă punct din oficiu. Timpul d lucru fctiv st d or. 5p. S considră numărul compl z + i. Arătați că z z zz 9 5p. Dtrminați numărul ral m, știind
INDICAŢII ŞI RĂSPUNSURI III.5.2. PROBLEME RECAPITULATIVE PROPUSE SPRE REZOLVARE 2 ALGEBRĂ 1. x 16 y 8y x 16 x 4 x 16 y 4 x x 4 Condiţiile radica
INDICAŢII ŞI RĂSPUNSURI III.5.. PROBLEME RECAPITULATIVE PROPUSE SPRE REZOLVARE ALGEBRĂ 1. x 16 y 8y x 16 x x 16 x 16 16 x Condiţiile radicalilor: 16 0 16 x 16 ecuaţia devine: 16 x 0 16 y y0; 8 S x y 16
0 Probleme pentru pregătirea examenului final la Analiză Matematică 1. Să se calculeze următoarele integrale improprii: dx a) x 4 ; b) x 3 dx dx
Probleme pentru pregătirea examenului final la Analiză Matematică. ă se calculeze următoarele integrale improprii: dx a) + x ; b) x dx dx; c) + x x + x ) ; dx x d) x + x ) ; e) dx; f) x p e xq dx, p >,
Dorel LUCHIAN Gabriel POPA Adrian ZANOSCHI Gheorghe IUREA algebră geometrie clasa a VIII-a ediţia a V-a, revizuită mate 2000 standard EDITURA PARALELA
Dorel LUCHIAN Gabriel POPA Adrian ZANOSCHI Gheorghe IUREA algebră geometrie clasa a VIII-a ediţia a V-a, revizuită mate 000 standard 3 10 PP Algebră Capitolul I. NUMERE REALE Competenţe specifice: Determinarea
Microsoft Word - Evaluare_initiala_Matematica_Cls07_Model_Test.doc
Precizări metodologice cu privire la testul de evaluare inińială la disciplina MATEMATICĂ, din anul şcolar 011-01 În anul şcolar 011-01, modelul propus pentru testare inińială la disciplina Matematică
Republica Serbia MINISTERUL ÎNVĂŢĂMÂNTULUI, ŞTIINŢEI ŞI DEZVOLTĂRII TEHNOLOGICE INSTITUTUL PENTRU EVALUAREA CALITĂŢII ÎNVĂŢĂMÂNTULUI ŞI EDUCAŢIEI INST
Republica Serbia MINISTERUL ÎNVĂŢĂMÂNTULUI, ŞTIINŢEI ŞI DEZVOLTĂRII TEHNOLOGICE INSTITUTUL PENTRU EVALUAREA CALITĂŢII ÎNVĂŢĂMÂNTULUI ŞI EDUCAŢIEI INSTITUTUL PEDAGOGIC AL VOIVODINEI EXAMENUL FINAL ÎN ÎNVĂŢĂMÂNTUL
Concursul de Matematică Upper.School ediția 2019 Etapa III - Clasa a 7-a Lista de probleme PROBLEMA 1 / 4 punctaj: 7 Aflați numerele prime p, q, r car
Concursul de Matematică Upper.School ediția 2019 Etapa III - Clasa a 7-a Lista de probleme PROBLEMA 1 / 4 punctaj: 7 Aflați numerele prime p, q, r care satisfac simultan următoarele condiții: qr p 4 1
TEST DE PROMOVARE ÎN CLASELE DE EXCELENȚĂ Clasa a V-a BAREM SUBIECTUL I a) Determinați numărul natural a din egalitatea: 315 :
TEST DE PROMOVARE ÎN CLASELE DE EXCELENȚĂ Clasa a V-a 29.09.2018 BAREM SUBIECTUL I a) Determinați numărul natural a din egalitatea: 315 : 7 9 4 22 5 204 : 2 2 a 16 : 4 43 b) Se consideră șirul următor
matematica
MINISTERUL EDUCAŢIEI, CERCETĂRII ŞI INOVĂRII PROGRAMĂ ŞCOLARĂ M A T E M A T I C Ă CLASA A IX-A CICLUL INFERIOR AL LICEULUI Aprobată prin ordin al ministrului nr. / Bucureşti, 2009 NOTĂ DE PREZENTARE În
PROIECT DIDACTIC
Plan de lecție Informații generale Obiectul: Matematică Clasa: a VII - a Durata: 50 min Mijloace TIC: calculatorul profesorului cu videoproiector,calculatoare pentru elevi Tema lecției: Aria triunghiului
RecMat dvi
Conice şi cubice în probleme elementare de loc geometric Ştefan DOMINTE 1 Abstract. In this Note, a number of simple problems are presented to support the idea that conic and cubic curves can frequently
{ 3x + 3, x < 1 Exemple. 1) Fie f : R R, f(x) = 2x + 4, x 1. Funcţia f este derivabilă pe R\{1} (compunere de funcţii elementare), deci rămâne să stud
{ 3 + 3, < Eemple. ) Fie f : R R, f() + 4,. Funcţia f este derivabilă pe R\{} (compunere de funcţii elementare), deci rămâne să studiem derivabilitatea în a. Atunci f s() 3+3 6,< 3, f d f() f() (),> funcţia
recmat dvi
Concursul de matematică Florica T.Câmpan Etapa judeţeană, 5-6 mai 2005 Notă. Toate subiectele sunt obligatorii. Timp de lucru: cl. a IV-a 90 de minute, cl. V-VIII 2 ore. ClasaaIV-a 1. Să seafledouă numere
Microsoft Word - probleme_analiza_numerica_ses_ian09.rtf
Universitatea Spiru Haret Facultatea de Matematica-Informatica Disciplina obligatorie; Anul 3, Sem. 1,Matematica si Informatica CONTINUTUL TEMATIC AL DISCIPLINEI Metode numerice de rezolvare a sistemelor
Microsoft Word - a5+s1-5.doc
Unitatea şcolară: Şcoala cu cls. I-VIII Sf. Vineri Profesor: Gh. CRACIUN Disciplina: Matematică Clasa a V-a / 4 ore pe săpt./ Anul şcolar 007-008 PROIECTAREA DIDACTICĂ ANUALĂ Număr săptămâni: 35 Număr
Clasele primare Probleme propuse 1 P.164. Scrie vecinii vecinului comun al numerelor 16 şi 18. (Clasa I ) Diana Tănăsoaie, elevă, Iaşi P.165. După ce
Clasele primare Probleme propuse 1 P.164. Scrie vecinii vecinului comun al numerelor 16 şi 18. (Clasa I ) Diana Tănăsoaie, elevă, Iaşi P.165. După ce dau celor doi fraţi mai mari câte două banane, mănânc
COMENTARII FAZA JUDEŢEANĂ, 9 MARTIE 2013 Abstract. Personal comments on some of the problems presented at the District Round of the National Mathemati
COMENTARII FAZA JUDEŢEANĂ, 9 MARTIE 2013 Abstract. Personal comments on some of the problems presented at the District Round of the National Mathematics Olympiad 2013. Data: 12 martie 2013. Autor: Dan
Cursul 7 Formula integrală a lui Cauchy Am demonstrat în cursul precedent că, dacă D C un domeniu simplu conex şi f : D C o funcţie olomorfă cu f cont
Cursul 7 Formula integrală a lui Cauchy Am demonstrat în cursul precedent că, dacă D C un domeniu simplu conex şi f : D C o funcţie olomorfă cu f continuă pe D, atunci, pe orice curbă rectificabilă şi
C:/Users/Lenovo/Dropbox/activitate matematica/cursuri/MS ETTI /msetti.dvi
urs 4 Integrale curbilinii 4.1 Drumuri şi curbe Definiţie 4.1. O funcţie continuă γ : [a,b] R m se numeşte drum plan dacă m = 2 sau drum în spaţiu dacă m = 3. Punctul γ(a) se numeşte originea drumului,
Microsoft Word - SUBIECTE FAZA LOCALA FEBRUARIE 2007
CLASA a - V a 1 007 1. a) ArătaŃi că umărul A= 1+ + + +... + este divizibil cu 15. b) La u cocurs de matematică au participat elevi di clasele a V-a A, a V-a B şi a V-a C. 7 de elevi u sut di clasa a V-a
Marian Tarina
PROGRAMA LA MATEMATICĂ An școlar 2018-2019 Temele propuse vor fi detaliate conform programei şcolare în vigoare care cuprinde atât conţinuturile obligatorii cât şi conţinuturile suplimentare menţionate
CLP_UTCN-grila-2012.dvi
Liceul: Numele: Punctaj: Prenumele: Concursul liceelor partenere cu Universitatea Tehnică din Cluj-Napoca Test grilă Ediţia a treia mai 0 Clasa a X-a În casuţa din stânga întrebării se va scrie litera
MergedFile
GHID DE PREDARE A MATEMATICII CU AJUTORUL METODELOR DIGITALE Clasa a VI-a Realizat de Szasz Szilard, profesor Digitaliada, Nicoleta Duma, profesor Digitaliada, Aura Bârdeș, profesor Digitaliada, coordonat
CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI Etapa locală, 24 februarie 2017 PROFIL TEHNIC ŞI SERVICII, RESURSE NATURALE, PROTECŢIA MEDIU
SUBIECTE - clasa a IX-a 1. Determinați mulțimile: a) ; b) ; c). 2. Arătați că: a), ; b) dacă, atunci. 3. Considerăm dreptunghiul ABCD și punctele E, F și M, astfel încât, și. Dacă N este mijlocul lui (EF),
C:/Users/Lenovo/Dropbox/activitate matematica/cursuri/MS ETTI /msetti.dvi
Curs 1 Noţiuni de teoria câmpului 1.1 Vectori şi operaţii cu vectori 1.1.1 Scalari şi vectori Definiţie 1.1. Un număr real λ R se va numi scalar. O pereche de numere reale (a 1,a ) R se va numi vector
Facultatea de Matematică Anul II Master, Geometrie Algebrică Mulţimi algebrice ireductibile. Dimensiune 1 Mulţimi ireductibile Propoziţia 1.1. Fie X u
Facultatea de Matematică Anul II Master, Geometrie Algebrică Mulţimi algebrice ireductibile. Dimensiune 1 Mulţimi ireductibile Propoziţia 1.1. Fie X un spaţiu topologic. Următoarele afirma-ţii sunt echivalente:
fIŞE DE LUCRU
FIŞE DE LUCRU MICROSOFT OFFICE EXCEL FORMULE ŞI FUNCŢII EXCEL Obiective Aplicarea operaţiilor elementare şi a conceptelor de bază ale aplicaţiei Excel Utilizarea opţiunilor de formatare şi gestionare a
Examenul de bacalaureat 2012
2 MONITORUL OFICIAL AL ROMÂNIEI, PARTEA I, Nr. 696/7.IX.2016 ACTE ALE ORGANELOR DE SPECIALITATE ALE ADMINISTRAȚIEI PUBLICE CENTRALE MINISTERUL EDUCAȚIEI NAȚIONALE ȘI CERCETĂRII ȘTIINȚIFICE ORDIN privind
Microsoft Word - LogaritmiBac2009.doc
Logaritmi. EcuaŃii logaritmice Logaritmi DefiniŃie. Fie a R * +, a şi b R * + douã numere reale. Se numeşte logaritm al numãrului real strict pozitiv b exponentul la care trebuie ridicat numãrul a, numit
Ecuatii si sisteme de ecuatii neliniare 1 Metoda lui Newton Algorithm 1 Metoda lui Newton pentru ecuaţia f(x) = 0. Date de intrare: - Funcţia f - Apro
Ecuatii si sisteme de ecuatii neliniare Metoda lui Newton Algorithm Metoda lui Newton pentru ecuaţia f(x) = 0. - Funcţia f - Aproximaţia iniţială x - Eroarea admisă ε - Numărul maxim de iteraţii ITMAX
Algebra si Geometri pentru Computer Science
Natura este scrisă în limbaj matematic. Galileo Galilei 5 Aplicatii liniare Grafica vectoriala In grafica pe calculator, grafica vectoriala este un procedeu prin care imaginile sunt construite cu ajutorul
Colec ia MATE EDITURA PARALELA 45 Matematic. Clasa a VI-a 1
Colecia MATE 2000 + Matematic. Clasa a VI-a 1 Matematic. Clasa a VI-a 2 Acest auxiliar didactic este aprobat pentru utilizarea în unitile de învmânt preuniversitar prin O.M.E.N. nr. 3530/04.04.2018. Lucrarea
Cursul 8 Funcţii analitice Vom studia acum comportarea şirurilor şi seriilor de funcţii olomorfe, cu scopul de a dezvălui o proprietate esenţială a ac
Cursul 8 Funcţii analitice Vom studia acum comportarea şirurilor şi seriilor de funcţii olomorfe, cu scopul de a dezvălui o proprietate esenţială a acestor funcţii: analiticitatea. Ştim deja că, spre deosebire
curs 9 v3 [Compatibility Mode]
Investeşte în oameni! FONDUL SOCIAL EUROPEAN Programul Operaţional Sectorial pentru Dezvoltarea Resurselor Umane 007 03 Aa prioritară nr. Educaţia şi formarea profesională în sprijinul creşterii economice
C10: Teoria clasică a împrăștierii Considerăm un potențial infinit în interiorul unui domeniu sferic de rază a și o particulă incidentă (Figura 1) la
C10: Teoria clasică a împrăștierii Considerăm un potențial infinit în interiorul unui domeniu sferic de rază a și o particulă incidentă (Figura 1) la distanta b de centrul sferei. Alegem un sistem de coordonate
Revista Electronică MateInfo.ro ISSN August APLICAŢII ALE ANALIZEI MATEMATICE ÎN GEOMETRIA ÎN SPAŢIU (2) Prof. Poenaru
APLICAŢII ALE ANALIZEI MATEMATICE ÎN GEOMETRIA ÎN SPAŢIU Pro. Poenaru Dan, Colegiul Economic I.Pop Cluj -Napoca Aşa cum s-a putut urmări în articolele precedente, pentru rezolvarea unor probleme de geometrie
Tiberiu Trif Analiză matematică 2 Calcul diferențial și integral în R n
Tiberiu Trif Analiză matematică 2 Calcul diferențial și integral în R n Cuprins Notații v 1 Topologie în R n 1 1.1 Spațiul euclidian R n........................ 1 1.2 Structura topologică a spațiului
Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică Gheorghe Asachi Iaşi, 2015 Analiză Matematică Lucian Maticiuc 1 / 29
Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică Gheorghe Asachi Iaşi, 2015 Analiză Matematică Lucian Maticiuc 1 / 29 Definiţie. Şiruri mărginite. Şiruri monotone. Subşiruri ale
Metode Numerice
Metode Numerice Prof. Bogdan Gavrea CTI 2019 pentru rezolvarea numerică a sistemelor liniare Matrici diagonal dominante Definiţie O matrice A M n,n (C), A = (a ij ) 1 i,j n se numeşte diagonal dominantă
rm2003ii.dvi
Concursul Florica T. Câmpan, ediţia a III-a 1 Faza judeţeană, 1 martie 2003 Clasa a IV-a 1. Care este cel mai mare număr care împărţitla10dă câtul 9? 2. Să se ordoneze numerele din şirul următor în ordinea
RecMat dvi
Soluţiile problemelor propuse în nr. /6 Clasele primare P355. Găsiţi trei numere consecutive în şirul numerelor de la la 3 care să aibă suma 3. (Clasa pregătitoare) Mariana Manoli, elevă, Iaşi Soluţie.
Cuprins ANALIZĂ MATEMATICĂ CALCUL INTEGRAL CUPRINS Unitatea de învăţare Titlu Pagina INTRODUCERE 1 1 Primitive 3 Obiectivele unităţii de învăţare nr.
Cuprins CALCUL INTEGRAL CUPRINS Unitatea de învăţare Titlu Pagina INTRODUCERE 1 1 Primitive 3 Obiectivele unităţii de învăţare nr. 1 4 1.1. Primitive. Noțiuni generale 4 1.2. Calculul primitivelor Test
Similitudini în plan şi puncte Torricelli asociate Cătălin ŢIGĂERU 1 Subiectul lucrării îl reprezintă operaţia de compunere a similitudinilor aplicată
Similitudini în plan şi puncte Torricelli asociate Cătălin ŢIGĂERU 1 Subiectul lucrării îl reprezintă operaţia de compunere a similitudinilor aplicată unei configuraţii geometrice: un triunghi ABC şi două
Curs 10 Aplicaţii ale calculului diferenţial. Puncte de extrem 10.1 Diferenţiale de ordin superior S¼a trecem acum la de nirea diferenţialelor de ordi
Curs 0 Aplicaţii ale calculului diferenţial. Puncte de extrem 0. Diferenţiale de ordin superior S¼a trecem acum la de nirea diferenţialelor de ordin superior. De niţia 0.. Fie n 2; D R k o mulţime deschis¼a
subiecte clasa7
Concursul interjudeńean de matematică Gheorghe Vrănceanu, Bacău-007 Clasa a VII-a Subiectul I Să se demonstreze că există un punct M în interiorul unui triunghi ABC astfel încât triunghiurile ABM, BCM
Soluţiile problemelor propuse în nr. 1/2014 Clasele primare P.283. Scrieţi + sau în fiecare pătrăţel din = astfel încât să obţineţi o
Soluţiile problemelor propuse în nr. /204 Clasele primare P.283. Scrieţi + sau în fiecare pătrăţel din 2 3 4 = 7 2 4 astfel încât să obţineţi o egalitate. Câte soluţii există? Explicaţi! (Clasa I ) Codruţa
Matematica - Clasa teste pentru grupele de excelenta
2. Dacă abc cd = 262, calculaţi ab (c + d). 3. Calculaţi suma numerelor abc, dacă a < b şi c = a + b + 2. 4. Calculaţi suma dintre cea mai mică sumă S = a + b + c + d şi cea mai mare sumă S, dacă a 1 =
Elemente de aritmetica
Elemente de aritmetică Anul II Februarie 2017 Divizibilitate în Z Definiţie Fie a, b Z. Spunem că a divide b (scriem a b) dacă există c Z astfel încât b = ac. In acest caz spunem că a este un divizor al
Matematica Clasa 5 Culegere De Exercitii Si Probleme
uprins Teste de evaluare inițială... 7 4 I. Numere naturale. Numere naturale... 9. Scrierea şi citirea numerelor naturale... 9.2 xa numerelor naturale. ompararea şi ordonarea numerelor naturale... 4.3
SIMULARE EXAMEN DE BACALAUREAT LA MATEMATICA Toate subiectele (I, II, III) sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv
SIMULARE EXAMEN DE BACALAUREAT LA MATEMATICA 8.07.0 Toate subiectele (I, II, III) sut obligatorii. Se acordă 0 pucte di oficiu. Tipul efectiv de lucru este de ore. La toate subiectele se cer rezolvări
ARTUR BĂLĂUCĂ ARITMETICĂ Teme pentru centre de excelență MODELE DE PROBLEME REZOLVATE DE PROBLEME SEMNIFICATIVE PENTRU OLIMPIADE, CONCURS
ARTUR BĂLĂUCĂ ARITMETICĂ Teme pentru centre de excelență + 0 MODELE DE PROBLEME REZOLVATE + 1130 DE PROBLEME SEMNIFICATIVE PENTRU OLIMPIADE, CONCURSURI ŞI CENTRE DE EXCELENŢĂ Clasa a V-a Ediţia a X-a EDITURA
Cursul 12 (plan de curs) Integrale prime 1 Sisteme diferenţiale autonome. Spaţiul fazelor. Fie Ω R n o mulţime deschisă şi f : Ω R n R n o funcţie de
Cursul 12 (plan de curs) Integrale prime 1 Sisteme diferenţiale autonome. Spaţiul fazelor. Fie Ω R n o mulţime deschisă şi f : Ω R n R n o funcţie de clasă C 1. Vom considera sistemul diferenţial x = f(x),