Prelegerea 4 În această prelegere vom învăţa despre: Algebre booleene; Funcţii booleene; Mintermi şi cuburi n - dimensionale. 4.1 Definirea algebrelor

Mărimea: px
Porniți afișarea la pagina:

Download "Prelegerea 4 În această prelegere vom învăţa despre: Algebre booleene; Funcţii booleene; Mintermi şi cuburi n - dimensionale. 4.1 Definirea algebrelor"

Transcriere

1 Prelegerea 4 În această prelegere vom învăţa despre: Algebre booleene; Funcţii booleene; Mintermi şi cuburi n - dimensionale. 4.1 Definirea algebrelor booleene Definiţia 4.1 Se numeşte algebră Boole (booleană) o latice B complementată şi distributivă. Deci, o algebră booleeană B verifică cele şase postulate ale laticilor, condiţiile de distributivitate, existenţa elementelor 0, 1 şi postulatul Pentru orice element a B, există a B astfel încât a a = 1, a a = 0. O algebră Boole poate fi definită şi direct, în felul următor: Definiţia 4.2 O algebră Boole este un sistem B= (B,,, 0, 1) unde: 1. a, b, c B (a b) c = a (b c); (asociativitatea lui ) 2. a, b, c B (a b) c = a (b c); (asociativitatea lui ) 3. a, b B a b = b a; (comutativitatea lui ) 4. a, b B a b = b a; (comutativitatea lui ) 5. 0 B unic astfel încât a B a 0 = 0 a = a; (element unitate pentru ) 37

2 38 PRELEGEREA B unic astfel încât a B a 1 = 1 a = a; (element unitate pentru ) 7. a, b, c B a (b c) = (a b) (a c); (distributivitatea lui faţă de ) 8. a, b, c B a (b c) = (a b) (a c); (distributivitatea lui faţă de ) 9. a B, a B a a = 0, a a = 1. (complement) Echivalenţa dintre cele două Definiţii 4.1 şi 4.2 este imediată. O primă observaţie este că o algebră booleană are cel puţin două elemente 0 şi 1, iar 0 1. Exemplul 4.1 Fie Q o mulţime. Mulţimea Q= {P P Q} = 2 Q formează o algebră Boole cu operaţiile de reuniune şi intersecţie. Elementul 0 este mulţimea vidă, iar elementul 1 este mulţimea Q. Axiomele din Definiţia 4.2 se verifică imediat. Exemplul 4.2 Mulţimea B = {0, 1} cu operaţiile formează de asemenea o algebră booleană B= (B,,, 0, 1). 4.2 Proprietăţi ale algebrelor booleene Toate proprietăţile laticilor modulare, distributive şi complementate sunt valabile într-o algebră Boole. Ele pot rezulta direct din Definiţia 4.1 sau pot fi deduse pe baza Definiţiei 4.2. Teorema 4.1 Într-o algebră booleană sunt verificate legile de idempotenţă: a a = a, a a = a. Demonstraţie: Vom avea a a = (a a) 1 = (a a) (a a ) = a (a a ) = a 0 = a. A doua relaţie este adevărată conform principiului dualităţii. Ea poate fi demonstrată şi direct, astfel: a a = (a a) 0 = (a a) (a a ) = a (a a ) = a 1 = a. Teorema 4.2 a 1 = 1, a 0 = 0.

3 4.2. PROPRIETĂŢI ALE ALGEBRELOR BOOLEENE 39 Demonstraţie: a 1 = (a 1) 1 = (a 1) (a a ) = a (1 a ) = a a = 1, a 0 = (a 0) 0 = (a 0) (a a ) = a (0 a ) = a a = 0. (a doua relaţie poate fi dedusă şi prin dualitate). Teorema 4.3 a (a b) = a, a (a b) = a. (absorbţie) Demonstraţie: a (a b) = (a 1) (a b) = a (1 b) = a (b 1) = a 1 = a, a (a b) = (a a) (a b) = a (a b) = a. Teorema 4.4 Pentru orice a B, a este unic. Demonstraţie: presupunem prin absurd că există două complemente a, a 1 ale lui a. Conform Definiţiei 4.2, avem a a = a a 1 = 1, a a = a a 1 = 0. Atunci a 1 = 1 a 1 = (a a ) a 1 = a 1 (a a ) = (a 1 a) (a 1 a ) = 0 (a 1 a ) = (a a ) (a 1 a ) = (a a 1) a = 1 a = a. Teorema 4.5 (a ) = a. Demonstraţie: (a ) este complementul lui a. Dar şi a este complementul lui a. Deoarece complementul este unic (Teorema 4.4), rezultă (a ) = a. Deci, putem considera complementara ca o aplicaţie bijectivă : B B. Teorema 4.6 (a b) = a b, (a b) = a b. (regulile De Morgan) Demonstraţie: Vom demonstra că (a b) (a b ) = 1 şi (a b) (a b ) = 0; deci a b şi a b sunt complementare. Din Teorema 4.4 rezultă că (a b) = a b. Deci (a b) (a b ) = [(a b) a ] [(a b) b ] = [(b a) a ] [a (b b )] = [b (a a )] (a 1) = (b 1) 1 = 1 şi (a b) (a b ) = [a (a b )] [b (a b )] = [(a a ) b ] [b (b a )] = 0 [(b b ) a ] = 0. Pentru a doua relaţie se procedează similar. Teorema 4.7 Într-o algebră Boole, a b a b. Demonstraţie: Avem a b = a b = b, deci a b = (a b) = b, adică tocmai a b

4 40 PRELEGEREA 4. Teorema 4.8 a b a b = 0 a b = 1. Demonstraţie: Din a b, folosind proprietatea de izotonie, avem a b b b = 0, deci a b = 0. Invers, dacă a b = 0, atunci a b = (a b) 1 = (a b) (b b ) = (a b ) b = 0 b = b, deci a b. La fel, a b a b = (a b ) = 0 = 1. Propoziţia 4.1 a b = 0 b a. Demonstraţie: a = a 0 = a (a b) = (a a) (a b) = 1 (a b) = a b, deci b a. Implicaţia inversă se verifică similar. 4.3 Alte operaţii booleene Înafara celor trei operaţii folosite până acum de o algebră booleană (,, ), mai sunt cunoscute şi alte operaţii. Astfel, putem enumera: 1. Diferenţa simetrică: a b = (a b ) (a b); 2. Operatorul Sheffer: a b = (a b) ; 3. Echivalenţa: a b = (a b ) (a b); 4. Implicaţia: a b = b a. Ele au o serie de proprietăţi a căror demonstrare o lăsăm ca exerciţiu. Propoziţia = 1 1 = 0, 0 1 = 1 0 = 1; 2. este asociativă şi comutativă; 3. a 0 = a, a 1 = a ; 4. a a = 0, a a = 1; 5. a b = c = a c = b; 6. a b = c = a b c = 0; 7. a (b c) = (a b) (a c). Propoziţia a b = (a b) ;

5 4.4. FUNCŢII BOOLEENE a b = a b ; 3. a b = (a b) (b a); 4. a b a b = 1. Propoziţia 4.4 Afirmaţiile 1. a b = 0; 2. a b = 1; 3. a = b; sunt echivalente. Propoziţia 4.5 şi verifică axiomele unei distanţe. 4.4 Funcţii booleene În continuare vom considera o algebră booleană particulară (vezi şi Exemplul 4.2) A= ({0, 1}, +,, 0, 1) unde Mai avem 0 = 1, 1 = 0. Axiomele unei algebre booleene se verifică imediat. În mod uzual, operatorul se omite (similar cu operatorul de înmulţire din matematică). Vom nota de asemenea {0, 1} n = {0, 1} {0, 1}... {0, 1}. }{{} n ori Definiţia 4.3 O funcţie booleană f(x 1, x 2,..., x n ) este o aplicaţie f : {0, 1} n {0, 1}. Exemplul 4.3 Pentru n = 2 se pot construi 16 funcţii booleene de două variabile: x 1 x 2 f 0 f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9 f 10 f 11 f 12 f 13 f 14 f În general pentru n oarecare vom avea:

6 42 PRELEGEREA 4. Propoziţia 4.6 Pentru orice n 1 se pot defini 2 2n variabile. funcţii booleene de n Demonstraţie: Este imediată, deoarece {0, 1} n are 2 n elemente, iar {0, 1} numai două. Definiţia 4.4 Fie f, g : {0, 1} n {0, 1}. Definim f + g = h prin h(x 1, x 2,..., x n ) = f(x 1, x 2,..., x n ) + g(x 1, x 2,..., x n ); fg = h prin h(x 1, x 2,..., x n ) = f(x 1, x 2,..., x n ) g(x 1, x 2,..., x n ); f = g prin g(x 1, x 2,..., x n ) = (f(x 1, x 2,..., x n )). Exemplul 4.4 Să considerăm n = 2 şi funcţiile booleene (f 5 şi f 1 din Exemplul 4.3 f 0 1 g Atunci funcţiile f +g, fg, f şi g sunt definite conform următorului tablou: x 1 x 2 f g f + g fg f g Deci operaţiile cu funcţii sunt definite punct cu punct; reprezentarea lor sub formă tabelară constituie o modalitate convenabilă de calcul deoarece folosesc în mod direct formulele din tabelele de operaţii ale algebrei booleene A. Teorema 4.9 Fie F n mulţimea funcţiilor booleene de n (n 1) variabile. Sistemul F n = (F n, +,, 0, 1) formează o algebră booleană (algebra Boole a funcţiilor booleene de n variabile). Demonstraţie: Axiomele algebrei boolene se verifică uşor, folosind Definiţia 4.4. Funcţia 0 este definită iar funcţia 1 prin 0(x 1, x 2,..., x n ) = 0, x i {0, 1} (1 i n), 1(x 1, x 2,..., x n ) = 1, x i {0, 1} (1 i n).

7 4.4. FUNCŢII BOOLEENE 43 Definiţia 4.5 Fie F n algebra Boole a funcţiilor booleene de n variabile. Se numeşte pondere o aplicaţie w : F n N definită w(f) = card(f 1 (1)) (numărul de elemente din {0, 1} n care au imaginea 1 prin f). Exemplul 4.5 În Exemplul 4.3 sunt listate elementele algebrei F 2. Ponderile acestor elemente sunt listate în tabelul următor: f 0 f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9 f 10 f 11 f 12 f 13 f 14 f 15 w Următorul rezultat este imediat. Teorema w(f) + w(f ) = 2 n ; 2. w(f + g) + w(fg) = w(f) + w(g). Exemplul 4.6 Folosind Teorema 4.8 se poate defini şi o relaţie de ordine parţială pe F n. Astfel f g fg = 0 f + g = 1 Algebra F 1 a funcţiilor booleene de o variabilă este x f 0 f 1 f 2 f Pe baza relaţiei de ordine definite mai sus, ele se pot aranja sub următoarea diagramă Venn: f 0 f 1 f 2 f 3 Vom încerca în continuare să definim o reprezentare a funcţiilor booleene, utilă în construirea circuitelor liniare. Această reprezentare se bazează pe noţiunea de minterm. Definiţia 4.6 Fie n (n 1) un număr întreg şi i [0, 2 n 1]. Considerăm (i 1, i 2,..., i n ) 2 reprezentarea binară a lui i: n i = i k 2 n k (0 i k 1). k=1 Atunci funcţia minterm m i (x { 1, x 2,..., x n ) F n este definită prin 1 dacă x1 = i m i (x 1, x 2,..., x n ) = 1, x 2 = i 2,..., x n = i n 0 altfel

8 44 PRELEGEREA 4. Vom nota în continuare i = (i 1, i 2,..., i n ) 2 reprezentarea binară a numărului întreg i [0, 2 n 1]. Propoziţia m i m j = 0 dacă i j. 2. m i m i = m i. Demonstraţie: Imediat. Teorema 4.11 Orice funcţie booleană poate fi reprezentată în mod unic ca sumă de mintermi. Demonstraţie: Prin inducţie după k = w(f). k = 0: trivial; k = 1: orice astfel de funcţie este un minterm. k k +1: Să presupunem că f este o funcţie de pondere k +1. Deci există un întreg i = (i 1, i 2,..., i n ) 2 astfel ca f(i 1, i 2,..., i n ) = 1. Atunci conform Teoremei 4.10 f(x 1, x 2,..., x n ) = m i (x 1, x 2,..., x n ) + g(x 1, x 2,..., x n ) unde w(g) k. Unicitatea este şi ea imediată. Corolarul 4.1 Orice funcţie booleană f F n este de forma f(x 1, x 2,..., x n ) = i I m i (x 1, x 2,..., x n ) unde I {0, 1,..., 2 n 1}. Corolarul 4.2 Dacă f(x 1, x 2,..., x n ) = m i (x 1, x 2,..., x n ), i I g(x 1, x 2,..., x n ) = m i (x 1, x 2,..., x n ), atunci i J f(x 1, x 2,..., x n ) + g(x 1, x 2,..., x n ) = m i (x 1, x 2,..., x n ), f(x 1, x 2,..., x n )g(x 1, x 2,..., x n ) = i I J i I J f (x 1, x 2,..., x n ) = i I m i (x 1, x 2,..., x n ). m i (x 1, x 2,..., x n ), Exemplul 4.7 Fie n = 2 şi funcţia booleană: f(x 1, x 2 ) = m 0 (x 1, x 2 ) + m 2 (x 1, x 2 ) + m 3 (x 1, x 2 ) Un tabel cu valorile tuturor funcţiilor minterm de două variabile şi cu valorile funcţiei f este: x 1 x 2 m 0 (x 1, x 2 ) m 1 (x 1, x 2 ) m 2 (x 1, x 2 ) m 3 (x 1, x 2 ) f

9 4.4. FUNCŢII BOOLEENE 45 Teorema 4.11 are şi o interpretare geometrică, deosebit de utilă pentru verificarea anumitor proprietăţi legate de aplicaţii la circuite. Astfel, să considerăm un cub n dimensional. Acesta are 2 n vârfuri, notate cu vectori de n elemente binare {0, 1}. Din fiecare vârf pleacă n laturi. O latură leagă două vârfuri dacă şi numai dacă notarea acestora diferă printr-o singură poziţie. În figura de mai jos sunt prezentate 1 - cub, 2 - cub şi 3 - cubul. 1 0 n = n = n = 3 Teorema 4.12 O funcţie booleană f F n se poate exprima în mod unic ca o submulţime de vârfuri ale unui n - cub. Demonstraţie: Se poate stabili o corespondenţă biunivocă între funcţiile minterm şi vârfurile unui n - cub astfel: m i (x 1, x 2,..., x n ) (i 1, i 2,..., i n ) 2 = i. Teorema 4.11 asigură unicitatea acestei reprezentări. Exemplul 4.8 Fie funcţia booleană f(x, y, z) = m 0 (x, y, z) + m 2 (x, y, z) + m 4 (x, y, z) + m 6 (x, y, z) + m 7 (x, y, z) O notaţie des utilizată este f(x, y, z) = (0, 2, 4, 6, 7), sau f are mulţimea de indici I = {0, 2, 4, 6, 7}. În reprezentare geometrică, funcţia are forma de jos, unde vârfurile care o definesc sunt marcate cu cercuri albe Pe un n - cub se poate defini şi o distanţă în modul următor:

10 46 PRELEGEREA 4. Definiţia 4.7 Fie i = (i 1, i 2,..., i n ) 2, j = (j 1, j 2,..., j n ) 2 două vârfuri ale unui n - cub. Distanţa dintre i şi j se defineşte prin n d(i, j) = (i k j k ). k=1 Expresia i k j k are valoarea 0 sau 1 după cum cei doi operanzi au sau nu aceeaşi valoare. Suma se face în mulţimea N a numerelor naturale. d(i, j) desemnează numărul de poziţii prin care diferă reprezentările binare ale lui i şi j. Se verifică uşor că d este o distanţă. Exemplul 4.9 Fie punctele i = (0, 1, 0, 1) şi j = (1, 0, 0, 1) într-un 4 - cub. Distanţa dintre ele este d(i, j) = = Exerciţii Exerciţiul 4.1 Să se arate că într-o algebră booleană au loc relaţiile: a (a b) = a b, a (a b) = a b. Exerciţiul 4.2 Într-o algebră booleană: (a b c) (a b c) (a b c) (a b c ) = (a b) (b c) (a c) Exerciţiul 4.3 Demonstraţi afirmaţiile din Propoziţiile 4.2, 4.3 şi 4.4. Exerciţiul 4.4 Demonstraţi Propoziţia 4.5 Exerciţiul 4.5 Să se arate că aplicaţia pondere este o funcţie de evaluare pozitivă a laticii F n. Exerciţiul 4.6 Să se construiască diagrama Venn a elementelor laticii F 2. Exerciţiul 4.7 Să se arate că pe F n se poate defini o distanţă prin relaţia δ(f, g) = w(f + g) w(fg). Să se construiască un tabel cu distanţele elementelor lui F 2. Exerciţiul 4.8 Demonstraţi Teorema 4.10, Propoziţia 4.7 şi Corolarul 4.2. Exerciţiul 4.9 Demonstraţi unicitatea reprezentării unei funcţii booleene ca sumă de mintermi (Teorema 4.11). Exerciţiul 4.10 Să se reprezinte un 4 - cub. Care sunt reprezentările geometrice ale funcţiilor f(x 1, x 2, x 3, x 4 ) scrise compact astfel: (1, 5, 8, 10, 12); (0, 4, 5, 6, 9, 10, 14, 15); (3, 11, 15). Exerciţiul 4.11 Să se arate că funcţia d din Definiţia 4.7 verifică postulatele unei distanţe.

Prelegerea 3 În această prelegere vom învăţa despre: Clase speciale de latici: complementate. modulare, metrice, distributive şi 3.1 Semi-distributivi

Prelegerea 3 În această prelegere vom învăţa despre: Clase speciale de latici: complementate. modulare, metrice, distributive şi 3.1 Semi-distributivi Prelegerea 3 În această prelegere vom învăţa despre: Clase speciale de latici: complementate. modulare, metrice, distributive şi 3.1 Semi-distributivitate şi semi - modularitate Fie L o latice. Se numeşte

Mai mult

Notiuni de algebra booleana

Notiuni de algebra booleana Noţiuni de algebră booleană (în lucru) Definiţie Algebră booleană = o structură algebrică formată din: O mulţime B Două operaţii binare notate cu (+) şi (.) O operaţie unară notată cu ( ) pentru care sunt

Mai mult

Microsoft Word - cap1p4.doc

Microsoft Word - cap1p4.doc Algebră liniară, geometrie analitică şi diferenţială.6 Subspaţii vectoriale Fie V un spaţiu vectorial peste corpul K. În cele ce urmează vom introduce două definiţii echivalente pentru noţiunea de subspaţiu

Mai mult

Probleme date la examenul de logică matematică şi computaţională. Partea a II-a Claudia MUREŞAN Universitatea din Bucureşti Facultatea de Matematică ş

Probleme date la examenul de logică matematică şi computaţională. Partea a II-a Claudia MUREŞAN Universitatea din Bucureşti Facultatea de Matematică ş Probleme date la examenul de logică matematică şi computaţională. Partea a II-a Claudia MUREŞAN Universitatea din Bucureşti Facultatea de Matematică şi Informatică Academiei 4, RO 0004, Bucureşti, România

Mai mult

Facultatea de Matematică Anul II Master, Geometrie Algebrică Mulţimi algebrice ireductibile. Dimensiune 1 Mulţimi ireductibile Propoziţia 1.1. Fie X u

Facultatea de Matematică Anul II Master, Geometrie Algebrică Mulţimi algebrice ireductibile. Dimensiune 1 Mulţimi ireductibile Propoziţia 1.1. Fie X u Facultatea de Matematică Anul II Master, Geometrie Algebrică Mulţimi algebrice ireductibile. Dimensiune 1 Mulţimi ireductibile Propoziţia 1.1. Fie X un spaţiu topologic. Următoarele afirma-ţii sunt echivalente:

Mai mult

LOGICA MATEMATICA SI COMPUTATIONALA Sem. I,

LOGICA MATEMATICA SI COMPUTATIONALA  Sem. I, LOGICA MATEMATICĂ ŞI COMPUTAŢIONALĂ Sem. I, 2017-2018 Ioana Leustean FMI, UB Partea III Calculul propoziţional clasic Consistenţă şi satisfiabilitate Teorema de completitudine Algebra Lindenbaum-Tarski

Mai mult

Logică și structuri discrete Mulțimi Casandra Holotescu

Logică și structuri discrete Mulțimi Casandra Holotescu Logică și structuri discrete Mulțimi Casandra Holotescu casandra@cs.upt.ro https://tinyurl.com/lectureslsd Mulțimi aspecte teoretice Ce sunt mulțimile? Mulțimea e un concept matematic fundamental. Definiție

Mai mult

L4. TEOREMELE ALGEBREI BINARE. FUNCȚII LOGICE ELEMENTARE. OPERAȚII LOGICE PE BIT. SINTEZA FUNCȚIILOR LOGICE DIN TABELE DE ADEVĂR 1. Obiective Prin par

L4. TEOREMELE ALGEBREI BINARE. FUNCȚII LOGICE ELEMENTARE. OPERAȚII LOGICE PE BIT. SINTEZA FUNCȚIILOR LOGICE DIN TABELE DE ADEVĂR 1. Obiective Prin par L4. TEOREMELE LGEBREI BINRE. FUNCȚII LOGICE ELEMENTRE. OPERȚII LOGICE PE BIT. SINTEZ FUNCȚIILOR LOGICE DIN TBELE DE DEVĂR 1. Obiective Prin parcurgerea acestei ședințe de laborator studenții vor fi capabili:

Mai mult

D.Rusu, Teoria măsurii şi integrala Lebesgue 6 MĂSURA LEBESGUE Cursul 5 Teorema 6.26 Există submulţimi ale lui R care nu sunt măsurabile Lebesgue. Dem

D.Rusu, Teoria măsurii şi integrala Lebesgue 6 MĂSURA LEBESGUE Cursul 5 Teorema 6.26 Există submulţimi ale lui R care nu sunt măsurabile Lebesgue. Dem D.Rusu, Teoria măsurii şi integrala Lebesgue 6 MĂSURA LEBESGUE Cursul 5 Teorema 6.26 Există submulţimi ale lui R care nu sunt măsurabile Lebesgue. Demonstraţie. Fie mulţimea A = [0, ], pe care definim

Mai mult

Cursul 12 (plan de curs) Integrale prime 1 Sisteme diferenţiale autonome. Spaţiul fazelor. Fie Ω R n o mulţime deschisă şi f : Ω R n R n o funcţie de

Cursul 12 (plan de curs) Integrale prime 1 Sisteme diferenţiale autonome. Spaţiul fazelor. Fie Ω R n o mulţime deschisă şi f : Ω R n R n o funcţie de Cursul 12 (plan de curs) Integrale prime 1 Sisteme diferenţiale autonome. Spaţiul fazelor. Fie Ω R n o mulţime deschisă şi f : Ω R n R n o funcţie de clasă C 1. Vom considera sistemul diferenţial x = f(x),

Mai mult

TEORIA MĂSURII Liviu C. Florescu Universitatea Al.I.Cuza, Facultatea de Matematică, Bd. Carol I, 11, R Iaşi, ROMANIA, e mail:

TEORIA MĂSURII Liviu C. Florescu Universitatea Al.I.Cuza, Facultatea de Matematică, Bd. Carol I, 11, R Iaşi, ROMANIA, e mail: TEORI MĂSURII Liviu C. Florescu Universitatea l.i.cuza, Facultatea de Matematică, Bd. Carol I, 11, R 700506 Iaşi, ROMNI, e mail: lflo@uaic.ro În mod intenţionat această pagină este lăsată albă! Cuprins

Mai mult

Distanţa euclidiană (indusă de norma euclidiană) (în R k ). Introducem în continuare o altă aplicaţie, de această dată pe produsul cartezian R k XR k,

Distanţa euclidiană (indusă de norma euclidiană) (în R k ). Introducem în continuare o altă aplicaţie, de această dată pe produsul cartezian R k XR k, Distanţa euclidiană (indusă de norma euclidiană) (în R k ). Introducem în continuare o altă aplicaţie, de această dată pe produsul cartezian R k XR k, aplicaţie despre care vom vedea că reprezintă generalizarea

Mai mult

FIŞA DISCIPLINEI

FIŞA DISCIPLINEI FIŞA DISCIPLINEI 1. Date despre program 1.1.Instituţia de învăţământ superior Universitatea SPIRU HARET 1.2.Facultatea Inginerie, Informatică şi Geografie 1.3.Departamentul Informatică şi Geografie 1.4.Domeniul

Mai mult

Cursul 6 Cadru topologic pentru R n În continuarea precedentei părţi, din cursul 5, dedicată, în întregime, unor aspecte de ordin algebric (relative l

Cursul 6 Cadru topologic pentru R n În continuarea precedentei părţi, din cursul 5, dedicată, în întregime, unor aspecte de ordin algebric (relative l Cursul 6 Cadru topologic pentru R n În continuarea precedentei părţi, din cursul 5, dedicată, în întregime, unor aspecte de ordin algebric (relative la R n, în principal), sunt prezentate aici elemente

Mai mult

L4. TEOREMELE ALGEBREI BINARE. FUNCȚII LOGICE ELEMENTARE. OPERAȚII LOGICE PE BIT. SINTEZA FUNCȚIILOR LOGICE DIN TABELE DE ADEVĂR 1. Obiective Prin par

L4. TEOREMELE ALGEBREI BINARE. FUNCȚII LOGICE ELEMENTARE. OPERAȚII LOGICE PE BIT. SINTEZA FUNCȚIILOR LOGICE DIN TABELE DE ADEVĂR 1. Obiective Prin par L4. TEOREMELE LGEBREI BINRE. FUNCȚII LOGICE ELEMENTRE. OPERȚII LOGICE PE BIT. SINTEZ FUNCȚIILOR LOGICE DIN TBELE DE DEVĂR 1. Obiective Prin parcurgerea acestei ședințe de laborator studenții vor fi capabili:

Mai mult

Gheorghe IUREA Adrian ZANOSCHI algebră geometrie clasa a VII-a ediţia a V-a, revizuită mate 2000 standard EDITURA PARALELA 45 Matematică. Clasa a VII-

Gheorghe IUREA Adrian ZANOSCHI algebră geometrie clasa a VII-a ediţia a V-a, revizuită mate 2000 standard EDITURA PARALELA 45 Matematică. Clasa a VII- Gheorghe IUREA Adrian ZANOSCHI algebră geometrie clasa a VII-a ediţia a V-a, revizuită mate 2000 standard 3 Algebră Capitolul I. MULŢIMEA NUMERELOR RAŢIONALE Identificarea caracteristicilor numerelor raţionale

Mai mult

Geometrie afină Conf. Univ. Dr. Cornel Pintea cpintea math.ubbcluj.ro Cuprins 1 Săptămâna Endomorfismele unui spaţiu afin Transla

Geometrie afină Conf. Univ. Dr. Cornel Pintea   cpintea math.ubbcluj.ro Cuprins 1 Săptămâna Endomorfismele unui spaţiu afin Transla Geometrie afină Conf Univ Dr Cornel Pintea E-mail: cpintea mathubbclujro Cuprins 1 Săptămâna 12 1 2 Endomorfismele unui spaţiu afin 1 21 Translaţia 1 22 Subspaţii invariante 2 23 Omotetii 2 3 Apendix 2

Mai mult

Logică și structuri discrete Relații. Funcții parțiale Marius Minea marius/curs/lsd/ 20 octombrie 2014

Logică și structuri discrete Relații. Funcții parțiale Marius Minea   marius/curs/lsd/ 20 octombrie 2014 Logică și structuri discrete Relații. Funcții parțiale Marius Minea marius@cs.upt.ro http://www.cs.upt.ro/ marius/curs/lsd/ 20 octombrie 2014 Relații în lumea reală și informatică Noțiunea matematică de

Mai mult

MD.09. Teoria stabilităţii 1

MD.09. Teoria stabilităţii 1 MD.09. Teoria stabilităţii 1 Capitolul MD.09. Teoria stabilităţii Cuvinte cheie Soluţie stabilă spre +, instabilă si asimptotic stabilă, punct de echilibru, soluţie staţionară, stabilitatea soluţiei banale,

Mai mult

Logică și structuri discrete Logică propozițională Marius Minea marius/curs/lsd/ 3 noiembrie 2014

Logică și structuri discrete Logică propozițională Marius Minea   marius/curs/lsd/ 3 noiembrie 2014 Logică și structuri discrete Logică propozițională Marius Minea marius@cs.upt.ro http://www.cs.upt.ro/ marius/curs/lsd/ 3 noiembrie 2014 Unde aplicăm verificarea realizabilității? probleme de căutare și

Mai mult

DAN LASCU ADRIANA-LIGIA SPORIŞ ANDA OLTEANU PAUL VASILIU MATEMATICĂ. CULEGERE DE PROBLEME TIP GRILĂ PENTRU ADMITEREA ÎN ACADEMIA NAVALĂ MIRCEA CEL BĂT

DAN LASCU ADRIANA-LIGIA SPORIŞ ANDA OLTEANU PAUL VASILIU MATEMATICĂ. CULEGERE DE PROBLEME TIP GRILĂ PENTRU ADMITEREA ÎN ACADEMIA NAVALĂ MIRCEA CEL BĂT DAN LASCU ADRIANA-LIGIA SPORIŞ ANDA OLTEANU PAUL VASILIU MATEMATICĂ. CULEGERE DE PROBLEME TIP GRILĂ PENTRU ADMITEREA ÎN ACADEMIA NAVALĂ MIRCEA CEL BĂTRÂN Colecţia Matematică DAN LASCU ADRIANA-LIGIA SPORIŞ

Mai mult

Teoreme cu nume 1. Problema (Năstăsescu IX, p 147, propoziţia 5) Formula lui Chasles Pentru orice puncte M, N şi P avem MN + NP = MP.

Teoreme cu nume 1. Problema (Năstăsescu IX, p 147, propoziţia 5) Formula lui Chasles Pentru orice puncte M, N şi P avem MN + NP = MP. Teoreme cu nume Problema (Năstăsescu IX, p 47, propoziţia 5) Formula lui hasles Pentru orice puncte M, N şi P avem MN + NP = MP 2 Problema (Năstăsescu IX, p 68, teoremă) Vectorul de poziţie al centrului

Mai mult

Limbaje de ordinul I LOGICA DE ORDINUL I Un limbaj L de ordinul I este format din: o mulţime numărabilă V = {v n n N} de variabile; conectorii şi ; pa

Limbaje de ordinul I LOGICA DE ORDINUL I Un limbaj L de ordinul I este format din: o mulţime numărabilă V = {v n n N} de variabile; conectorii şi ; pa Limbaje de ordinul I LOGICA DE ORDINUL I Un limbaj L de ordinul I este format din: o mulţime numărabilă V = {v n n N} de variabile; conectorii şi ; paranteze: (, ); simbolul de egalitate =; cuantificatorul

Mai mult

Dorel LUCHIAN Gabriel POPA Adrian ZANOSCHI Gheorghe IUREA algebră geometrie clasa a VIII-a ediţia a V-a, revizuită mate 2000 standard EDITURA PARALELA

Dorel LUCHIAN Gabriel POPA Adrian ZANOSCHI Gheorghe IUREA algebră geometrie clasa a VIII-a ediţia a V-a, revizuită mate 2000 standard EDITURA PARALELA Dorel LUCHIAN Gabriel POPA Adrian ZANOSCHI Gheorghe IUREA algebră geometrie clasa a VIII-a ediţia a V-a, revizuită mate 000 standard 3 10 PP Algebră Capitolul I. NUMERE REALE Competenţe specifice: Determinarea

Mai mult

Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică Gheorghe Asachi Iaşi, 2015 Analiză Matematică Lucian Maticiuc 1 / 29

Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică Gheorghe Asachi Iaşi, 2015 Analiză Matematică Lucian Maticiuc 1 / 29 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică Gheorghe Asachi Iaşi, 2015 Analiză Matematică Lucian Maticiuc 1 / 29 Definiţie. Şiruri mărginite. Şiruri monotone. Subşiruri ale

Mai mult

Microsoft Word - a5+s1-5.doc

Microsoft Word - a5+s1-5.doc Unitatea şcolară: Şcoala cu cls. I-VIII Sf. Vineri Profesor: Gh. CRACIUN Disciplina: Matematică Clasa a V-a / 4 ore pe săpt./ Anul şcolar 007-008 PROIECTAREA DIDACTICĂ ANUALĂ Număr săptămâni: 35 Număr

Mai mult

Matematica VI

Matematica VI There are no translations available. Datorita unor probleme tehnice, site-ul nu poate fi vizionat cu Internet Explorer 8, partea de teste (apare pagina alba). Pentru navigare, va recomandam Chrome, Mozilla,

Mai mult

Pachete de lecţii disponibile pentru platforma AeL

Pachete de lecţii disponibile pentru platforma AeL Pachete de lecţii disponibile pentru platforma AeL -disciplina Matematică- Nr. crt Nume pachet clasa Nr. momente Nr.Recomandat de ore 1 Corpuri geometrice V 6 1 2 Fracţii V 14 5 3 Măsurarea lungimilor.

Mai mult

Examenul de bacalaureat 2012

Examenul de bacalaureat 2012 CENTRUL NAŢIONAL DE EVALUARE ŞI EXAMINARE PROGRAMA DE EXAMEN PENTRU DISCIPLINA MATEMATICĂ BACALAUREAT 2015 PROGRAMA M_tehnologic Filiera tehnologică, profilul servicii, toate calificările profesionale,

Mai mult

Spatii vectoriale

Spatii vectoriale Algebra si Geometrie Seminar 2 Octombrie 2017 ii Matematica poate fi definită ca materia în care nu ştim niciodată despre ce vorbim, nici dacă ceea ce spunem este adevărat. Bertrand Russell 1 Spatii vectoriale

Mai mult

Analiz¼a Matematic¼a - Curs 6 M¼ad¼alina Roxana Buneci

Analiz¼a Matematic¼a - Curs 6 M¼ad¼alina Roxana Buneci Analiz¼a Matematic¼a - Curs 6 M¼ad¼alina Roxana Buneci Cuprins 4 Spaţii topologice (continuare din cursul 5) 3 4.6 Spaţiul R n............................ 3 5 Calcul diferenţial 7 5. Derivatele funcţiilor

Mai mult

Examenul de bacalaureat 2012

Examenul de bacalaureat 2012 PROGRAMA PENTRU SIMULAREA EXAMENULUI DE BACALAUREAT 2019 LA DISCIPLINA MATEMATICĂ În cadrul examenului de Bacalaureat 2019, Programele de examen la disciplina Matematica se diferenţiază în funcţie de filiera,

Mai mult

matematica

matematica MINISTERUL EDUCAŢIEI, CERCETĂRII ŞI INOVĂRII PROGRAMĂ ŞCOLARĂ M A T E M A T I C Ă CLASA A IX-A CICLUL INFERIOR AL LICEULUI Aprobată prin ordin al ministrului nr. / Bucureşti, 2009 NOTĂ DE PREZENTARE În

Mai mult

Examenul de bacalaureat 2012

Examenul de bacalaureat 2012 INSPECTORATUL Ș C O L A R J U D E Ț E A N C O V A S N A PROGRAMA PENTRU SIMULAREA EXAMENULUI DE BACALAUREAT 2015 LA DISCIPLINA MATEMATICĂ În cadrul examenului de Bacalaureat 2015, Programele de examen

Mai mult

PROGRAMA CONCURSULUI NAŢIONAL

PROGRAMA CONCURSULUI NAŢIONAL ANUL ŞCOLAR 2011-2012 CLASA a IX-a În programa de concurs pentru clasa a IX-a sunt incluse conţinuturile programelor din clasele anterioare şi din etapele anterioare. 1. Mulţimi şi elemente de logică matematică.

Mai mult

Logică și structuri discrete Limbaje regulate și automate Marius Minea marius/curs/lsd/ 24 noiembrie 2014

Logică și structuri discrete Limbaje regulate și automate Marius Minea   marius/curs/lsd/ 24 noiembrie 2014 Logică și structuri discrete Limbaje regulate și automate Marius Minea marius@cs.upt.ro http://www.cs.upt.ro/ marius/curs/lsd/ 24 noiembrie 2014 Un exemplu: automatul de cafea acțiuni (utilizator): introdu

Mai mult

BAC 2007 Pro Didactica Programa M1 2 Rezolvarea variantei 36 versiune finală Redactia Pro Didactica Suportul pe net:

BAC 2007 Pro Didactica Programa M1 2 Rezolvarea variantei 36 versiune finală Redactia Pro Didactica Suportul pe net: BAC 27 Pro Didactica Programa M1 2 Rezolvarea variantei 36 versiune finală Redactia Pro Didactica Suportul pe net: http://www./ CAPITOLUL 1 Varianta 36 1. Subiectul I. (a) Avem 2 ( ) 2+ ( ) 2= 7i = 2 7

Mai mult

Cursul 8 Funcţii analitice Vom studia acum comportarea şirurilor şi seriilor de funcţii olomorfe, cu scopul de a dezvălui o proprietate esenţială a ac

Cursul 8 Funcţii analitice Vom studia acum comportarea şirurilor şi seriilor de funcţii olomorfe, cu scopul de a dezvălui o proprietate esenţială a ac Cursul 8 Funcţii analitice Vom studia acum comportarea şirurilor şi seriilor de funcţii olomorfe, cu scopul de a dezvălui o proprietate esenţială a acestor funcţii: analiticitatea. Ştim deja că, spre deosebire

Mai mult

Cursul 1 1. Introducere Corpul numerelor complexe Dezvoltarea istorică a gândirii matematice a urmărit îndeaproape evoluţia ideii de număr. Această ev

Cursul 1 1. Introducere Corpul numerelor complexe Dezvoltarea istorică a gândirii matematice a urmărit îndeaproape evoluţia ideii de număr. Această ev Cursul 1 1. Introducere Corpul numerelor complexe Dezvoltarea istorică a gândirii matematice a urmărit îndeaproape evoluţia ideii de număr. Această evoluţie, exprimată succint prin şirul de incluziuni

Mai mult

Retele Petri si Aplicatii

Retele Petri si Aplicatii Reţele Petri şi Aplicaţii Curs 3 RPA (2019) Curs 3 1 / 48 Conţinutul cursului 1 Arbori de acoperire 2 Probleme de decizie în reţele Petri 3 Invarianţi tranziţie RPA (2019) Curs 3 2 / 48 Arbori de acoperire

Mai mult

Tiberiu Trif Analiză matematică 2 Calcul diferențial și integral în R n

Tiberiu Trif Analiză matematică 2 Calcul diferențial și integral în R n Tiberiu Trif Analiză matematică 2 Calcul diferențial și integral în R n Cuprins Notații v 1 Topologie în R n 1 1.1 Spațiul euclidian R n........................ 1 1.2 Structura topologică a spațiului

Mai mult

C:/Users/Lenovo/Dropbox/activitate matematica/cursuri/MS ETTI /msetti.dvi

C:/Users/Lenovo/Dropbox/activitate matematica/cursuri/MS ETTI /msetti.dvi Curs 1 Noţiuni de teoria câmpului 1.1 Vectori şi operaţii cu vectori 1.1.1 Scalari şi vectori Definiţie 1.1. Un număr real λ R se va numi scalar. O pereche de numere reale (a 1,a ) R se va numi vector

Mai mult

Microsoft Word - Lab1a.doc

Microsoft Word - Lab1a.doc Sisteme de numeraţie şi coduri numerice 1.1. Sisteme de numeraţie 1.2. Conversii generale între sisteme de numeraţie 1.3. Reprezentarea numerelor binare negative 1.4. Coduri numerice 1.5. Aplicaţii In

Mai mult

PowerPoint Presentation

PowerPoint Presentation ELEMENTE DE MORFOLOGIE MATEMATICA Morfologia matematica Cadru de abordare diferit: Pana acum : Imaginea este o functie de doua variabile. Pixelii imaginii (valori si coordonate de pozitie) sunt structurati

Mai mult

Microsoft Word - Programa finala olimpiadei matematica 2007 gimnaziu.doc

Microsoft Word - Programa finala olimpiadei matematica 2007 gimnaziu.doc ROMÂNIA MINISTERUL EDUCAŢIEI ŞI CERCETĂRII DIRECŢIA GENERALĂ ÎNVĂŢĂMÂNT PREUNIVERSITAR SERVICIUL NAŢIONAL DE EVALUARE ŞI EXAMINARE PROGRAMA OLIMPIADEI DE MATEMATICĂ CLASELE V XII AN ŞCOLAR 006 / 007 Pentru

Mai mult

Şcoala ………

Şcoala ……… Şcoala... Clasa a X-a Disciplina: Matematică TC + CD Anul şcolar: 07-08 TC = trunchi comun 35 săptămâni: 8 săptămâni semestrul I CD = curriculum diferenţiat Nr. ore: 3 ore / săptămână 7 săptămâni semestrul

Mai mult

Noțiuni matematice de bază

Noțiuni matematice de bază Sistem cartezian definitie. Coordonate carteziene Sistem cartezian definiţie Un sistem cartezian de coordonate (coordonatele carteziene) reprezintă un sistem de coordonate plane ce permit determinarea

Mai mult

Consultatii ELa123, 06 ianuarie 2014

Consultatii ELa123, 06 ianuarie 2014 Consultatii ELa123, 06 ianuarie 2014 Paul Ulmeanu January 6, 2014 Paul Ulmeanu () Consultatii ELa123, 06 ianuarie 2014 January 6, 2014 1 / 22 Cuprins 1 Cuprins 2 Principii 3 Logica sistemului Date de intrare

Mai mult

Cursul 7 Formula integrală a lui Cauchy Am demonstrat în cursul precedent că, dacă D C un domeniu simplu conex şi f : D C o funcţie olomorfă cu f cont

Cursul 7 Formula integrală a lui Cauchy Am demonstrat în cursul precedent că, dacă D C un domeniu simplu conex şi f : D C o funcţie olomorfă cu f cont Cursul 7 Formula integrală a lui Cauchy Am demonstrat în cursul precedent că, dacă D C un domeniu simplu conex şi f : D C o funcţie olomorfă cu f continuă pe D, atunci, pe orice curbă rectificabilă şi

Mai mult

De la BIT la procesor

De la BIT la procesor Florin ONIGA DE LA BIT LA PROCESOR. Introducere în arhitectura calculatoarelor Editura UTPRESS Cluj-Napoca, 29 ISBN 978-66-737-366- Editura U.T.PRESS Str.Observatorului nr. 34 4775 Cluj-Napoca Tel.:264-4.999

Mai mult

ALGEBRA PENTRU INFORMATICĂ GEORGE CIPRIAN MODOI Cuprins Bibliografie 2 1. Mulţimi, Funcţii, Relaţii Preliminarii logice 3 Exerciţii la Prelimin

ALGEBRA PENTRU INFORMATICĂ GEORGE CIPRIAN MODOI Cuprins Bibliografie 2 1. Mulţimi, Funcţii, Relaţii Preliminarii logice 3 Exerciţii la Prelimin ALGEBRA PENTRU INFORMATICĂ GEORGE CIPRIAN MODOI Cuprins Bibliografie 2 1. Mulţimi, Funcţii, Relaţii 3 1.1. Preliminarii logice 3 Exerciţii la Preliminarii logice 3 1.2. Mulţimi 3 Operaţii cu mulţimi 4

Mai mult

PowerPoint Presentation

PowerPoint Presentation Circuite Integrate Digitale Conf. Monica Dascălu Curs Seminar Laborator notă separată Notare: 40% seminar 20% teme // + TEMA SUPLIMENTARA 40% examen 2014 CID - curs 1 2 Bibliografie Note de curs Cursul

Mai mult

I

I METODA VECTORIALĂ ÎN GEOMETRIE prof. Andrei - Octavian Dobre Această metodă poate fi descrisă după cum urmează: Fiind dată o problemă de geometrie, după explicitarea şi reprezentarea grafică a configuraţiei

Mai mult

gaussx.dvi

gaussx.dvi Algebră liniarăi 1 Recapitulare cunoştiinţe de algebră din clasa XI-a În clasa a XI s-a studiat la algebră problema existenţei soluţiei 1 şi calculării soluţiei sistemelor liniare 2 (adică sisteme care

Mai mult

Clasa IX 1. O lăcustă face salturi, fiecare salt în linie dreaptă şi de două ori mai lung ca precedentul. Poate vreodată lăcusta să revină în punctul

Clasa IX 1. O lăcustă face salturi, fiecare salt în linie dreaptă şi de două ori mai lung ca precedentul. Poate vreodată lăcusta să revină în punctul Clasa IX. O lăcustă face salturi, fiecare salt în linie dreaptă şi de două ori mai lung ca precedentul. Poate vreodată lăcusta să revină în punctul de plecare iniţial? Soluţie. Răspunsul este negativ.

Mai mult

Grafuri neorinetate Aplicatii 1 Care este numărul maxim de componente conexe pe care le poate avea un graf neorientat cu 20 noduri şi 12 muchii? a. 6

Grafuri neorinetate Aplicatii 1 Care este numărul maxim de componente conexe pe care le poate avea un graf neorientat cu 20 noduri şi 12 muchii? a. 6 Grafuri neorinetate Aplicatii 1 Care este numărul maxim de componente conexe pe care le poate avea un graf neorientat cu 20 noduri şi 12 muchii? a. 6 b. 12 c. 10 d. 15 2 Câte grafuri neorientate, distincte,

Mai mult

O metodă de rafinare a unor inegalităţi geometrice Temistocle BÎRSAN 1, Marius DRĂGAN 2, Neculai STANCIU 3 Abstract. This paper presents a method to o

O metodă de rafinare a unor inegalităţi geometrice Temistocle BÎRSAN 1, Marius DRĂGAN 2, Neculai STANCIU 3 Abstract. This paper presents a method to o O metodă de rafinare a unor inegalităţi geometrice Temistocle BÎSAN 1, Marius DĂGAN, Neculai STANCIU 3 Abstract. This paper presents a method to obtain some refined geometric inequalities in a triangle,

Mai mult

FIŞA DISCIPLINEI 1. Date despre program 1.1 Instituţia de învăţământ superior Universitatea Alexandru Ioan Cuza din Iaşi 1.2 Facultatea Facultatea de

FIŞA DISCIPLINEI 1. Date despre program 1.1 Instituţia de învăţământ superior Universitatea Alexandru Ioan Cuza din Iaşi 1.2 Facultatea Facultatea de FIŞA DISCIPLINEI 1. Date despre program 1.1 Instituţia de învăţământ superior Universitatea Alexandru Ioan Cuza din Iaşi 1.2 Facultatea Facultatea de Matematica 1.3 Departamentul Matematica Didactic 1.4

Mai mult

ASDN

ASDN PROIECTAREA LOGICĂ Laboratorul PL Suport de Laborator II 1. Să se găsească sumele minimale şi produsele minimale pentru următoarele funcţii: (a) f = m(0 + 2 + 4 + 8 + 10 + 12), (b) f = m(2 + 3 + 6 + 7

Mai mult

{ 3x + 3, x < 1 Exemple. 1) Fie f : R R, f(x) = 2x + 4, x 1. Funcţia f este derivabilă pe R\{1} (compunere de funcţii elementare), deci rămâne să stud

{ 3x + 3, x < 1 Exemple. 1) Fie f : R R, f(x) = 2x + 4, x 1. Funcţia f este derivabilă pe R\{1} (compunere de funcţii elementare), deci rămâne să stud { 3 + 3, < Eemple. ) Fie f : R R, f() + 4,. Funcţia f este derivabilă pe R\{} (compunere de funcţii elementare), deci rămâne să studiem derivabilitatea în a. Atunci f s() 3+3 6,< 3, f d f() f() (),> funcţia

Mai mult

Microsoft Word - Matematika_kozep_irasbeli_jav_utmut0513V28_roman.doc

Microsoft Word - Matematika_kozep_irasbeli_jav_utmut0513V28_roman.doc Matematika román nyelven középszint 0513 ÉRETTSÉGI VIZSGA 005. május 8. MATEMATIKA ROMÁN NYELVEN MATEMATICĂ KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA EXAMEN DE BACALAUREAT NIVEL MEDIU Az írásbeli vizsga időtartama:

Mai mult

20 SUBIECTE DE EXAMEN - De fapt, în pofida acestor probleme, până la urmă tot vom logaritma, căci aceasta este tehnica naturală în context. Trebuie do

20 SUBIECTE DE EXAMEN - De fapt, în pofida acestor probleme, până la urmă tot vom logaritma, căci aceasta este tehnica naturală în context. Trebuie do SUBIECTE DE EXAMEN - De fapt, în pofida acestor probleme, până la urmă tot vom logaritma, căci aceasta este tehnica naturală în context. Trebuie doar să gestionăm cu precauţie detaliile, aici fiind punctul

Mai mult

Prezentarea cursului Didactica Matematicii Oana Constantinescu

Prezentarea cursului Didactica Matematicii Oana Constantinescu Prezentarea cursului Didactica Matematicii Oana Constantinescu Didactica este stiinta conducerii procesului de predare-invatare-evaluare. Ea studiaza procesul de invatare in ansamblul sau, pe toate treptele

Mai mult

Lucian L. TURDEANU Georgeta D. POP (MANEA) BAZELE GEOMETRICE ALE FOTOGRAMETRIEI CONSPRESS BUCUREŞTI 2009

Lucian L. TURDEANU Georgeta D. POP (MANEA) BAZELE GEOMETRICE ALE FOTOGRAMETRIEI CONSPRESS BUCUREŞTI 2009 Lucian L. TURDEANU Georgeta D. POP (MANEA) BAZELE GEOMETRICE ALE FOTOGRAMETRIEI CONSPRESS BUCUREŞTI 2009 CUPRINS Pg. INTRODUCERE. Noţiuni preliminare (L. Turdeanu, G. Pop)... 6 Probleme... 11 1. GEOMETRIA

Mai mult

Elemente de aritmetica

Elemente de aritmetica Elemente de aritmetică Anul II Februarie 2017 Divizibilitate în Z Definiţie Fie a, b Z. Spunem că a divide b (scriem a b) dacă există c Z astfel încât b = ac. In acest caz spunem că a este un divizor al

Mai mult

O teoremă de reprezentare (II) Marian TETIVA 1 Abstract. In this paper some (in general well-known) results on complete sequences are exposed, with ap

O teoremă de reprezentare (II) Marian TETIVA 1 Abstract. In this paper some (in general well-known) results on complete sequences are exposed, with ap O teoremă de reprezentare (II) Marian TETIVA 1 Abstract. In this paper some (in general well-known) results on complete sequences are exposed, with applications to Erdős-Suranyi sequences. We start from

Mai mult

8.1. Elemente de Aritmetică. 8. Aplicatii (15 aprilie 2019) Lema 8.1. Fie (A, +) un grup abelian şi H, K A. Atunci H K şi H + K = {h + k h H şi k K} s

8.1. Elemente de Aritmetică. 8. Aplicatii (15 aprilie 2019) Lema 8.1. Fie (A, +) un grup abelian şi H, K A. Atunci H K şi H + K = {h + k h H şi k K} s 8.1. Elemente de Aritmetică. 8. Aplicatii (15 aprilie 2019) Lema 8.1. Fie (A, +) un grup abelian şi H, K A. Atunci H K şi H + K = {h + k h H şi k K} sunt sungrupuri ale lui A. Propoziţia 8.2. Considerăm

Mai mult

carteInvataturaEd_2.0_lectia5.pdf

carteInvataturaEd_2.0_lectia5.pdf Lect ia3 Diagrame Veitch-Karnaugh 5.1 Noţiuni teoretice Diagramele Veich-Karnaugh (V-K) sunt o modalitate de reprezentare grafică a funcţiilor logice. Pentru o funct ie de N variabile, diagrama corespunz

Mai mult

Aproximarea functiilor prin metoda celor mai mici patrate

Aproximarea functiilor prin metoda celor mai mici patrate Aproximarea funcţiilor prin metoda celor mai mici pătrate Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică Suport didactic pentru disciplina Metode numerice, 2017-2018

Mai mult

C10: Teoria clasică a împrăștierii Considerăm un potențial infinit în interiorul unui domeniu sferic de rază a și o particulă incidentă (Figura 1) la

C10: Teoria clasică a împrăștierii Considerăm un potențial infinit în interiorul unui domeniu sferic de rază a și o particulă incidentă (Figura 1) la C10: Teoria clasică a împrăștierii Considerăm un potențial infinit în interiorul unui domeniu sferic de rază a și o particulă incidentă (Figura 1) la distanta b de centrul sferei. Alegem un sistem de coordonate

Mai mult

Capitolul MD. 10 Metoda funcţiilor Liapunov Fie sistemul diferenţial x = f (t, x), t t 0, x D R n. (10.1) Presupunem că x = 0 este punct de echilibru,

Capitolul MD. 10 Metoda funcţiilor Liapunov Fie sistemul diferenţial x = f (t, x), t t 0, x D R n. (10.1) Presupunem că x = 0 este punct de echilibru, Capitolul MD. 10 Metoda funcţiilor Liapunov Fie sistemul diferenţial x = f (t, x), t t 0, x D R n. (10.1) Presupunem că x = 0 este punct de echilibru, adică f (t, 0) = 0, t t 0. In acest paragraf, funcţia

Mai mult

Microsoft Word - _arbori.docx

Microsoft Word - _arbori.docx ARBORI Să presupunem că o firmă doreşte să conecteze la TV, prin cablu, cele n case ale unui sat. Cum vor fi conectate casele la cablu? Logic, va trebui ca fiecare casă să fie conectată. Apoi, la o casă

Mai mult

ETTI-AM2, , M. Joița & A. Niță Notițe de Adrian Manea Seminar 11 Transformarea Laplace Aplicații Transformarea Z Ecuații și sisteme diferenți

ETTI-AM2, , M. Joița & A. Niță Notițe de Adrian Manea Seminar 11 Transformarea Laplace Aplicații Transformarea Z Ecuații și sisteme diferenți Seminar Transformarea Laplace Aplicații Transformarea Z Ecuații și sisteme diferențiale Folosind transformata Laplace, putem reolva ecuații și sisteme diferențiale. Cu ajutorul proprietăților transformatei

Mai mult

Slide 1

Slide 1 ELECTROTEHNCĂ ET An - SA CRS 8 Conf.dr.ing.ec. Claudia PĂCRAR e-mail: Claudia.Pacurar@ethm.utcluj.ro . ntroducere în teoria circuitelor electrice. Puteri în regim armonic 3. Caracterizarea în complex a

Mai mult

ALGORITMICĂ. Seminar 3: Analiza eficienţei algoritmilor - estimarea timpului de execuţie şi notaţii asimptotice. Problema 1 (L) Să se determine număru

ALGORITMICĂ. Seminar 3: Analiza eficienţei algoritmilor - estimarea timpului de execuţie şi notaţii asimptotice. Problema 1 (L) Să se determine număru ALGORITMICĂ. Seminar 3: Analiza eficienţei algoritmilor - estimarea timpului de execuţie şi notaţii asimptotice. Problema 1 (L) Să se determine numărul de operaţii efectuate de către un algoritm care determină

Mai mult

ALGORITMII ŞI REPREZENTAREA LOR Noţiunea de algoritm Noţiunea de algoritm este foarte veche. Ea a fost introdusă în secolele VIII-IX de către Abu Ja f

ALGORITMII ŞI REPREZENTAREA LOR Noţiunea de algoritm Noţiunea de algoritm este foarte veche. Ea a fost introdusă în secolele VIII-IX de către Abu Ja f ALGORITMII ŞI REPREZENTAREA LOR Noţiunea de algoritm Noţiunea de algoritm este foarte veche. Ea a fost introdusă în secolele VIII-IX de către Abu Ja far Mohammed ibn Musâ al- Khowârizmî în cartea sa intitulată

Mai mult

Microsoft Word - Programa_Evaluare_Nationala_2011_Matematica.doc

Microsoft Word - Programa_Evaluare_Nationala_2011_Matematica.doc C E N T R U L NAłIONAL DE EVALUARE ŞI E X A M I N A R E PROGRAMA PENTRU DISCIPLINA MATEMATICĂ EVALUAREA NAłIONALĂ PENTRU ELEVII CLASEI A VIII A Pagina 1 din 5 PROGRAMA PENTRU DISCIPLINA MATEMATICĂ I. STATUTUL

Mai mult

Universtitatea Babeş-Bolyai Cluj-Napoca Facultatea de Matematică şi Informatică Anca Grad (născută Dumitru) Condiţii de optim îmbunătăţite pentru prob

Universtitatea Babeş-Bolyai Cluj-Napoca Facultatea de Matematică şi Informatică Anca Grad (născută Dumitru) Condiţii de optim îmbunătăţite pentru prob Universtitatea Babeş-Bolyai Cluj-Napoca Facultatea de Matematică şi Informatică nca Grad (născută Dumitru) Condiţii de optim îmbunătăţite pentru probleme de optimizare scalară, vectorială şi multivocă

Mai mult

Microsoft Word - 03 Dominica MOISE.doc

Microsoft Word - 03 Dominica MOISE.doc CONFERINȚA NAȚIONALĂ DE INSTRUMENTAȚIE VIRTUALĂ, EDIȚIA A V-A, BUCURE TI, 20 MAI 2008 13 Pachet de programe care ilustrează capitole din matematică, fizică şi studiul fractalilor Luminița Dominica MOISE,

Mai mult

Retele Petri si Aplicatii

Retele Petri si Aplicatii Reţele Petri şi Aplicaţii Curs 4 RPA (2019) Curs 4 1 / 45 Cuprins 1 Analiza structurală a reţelelor Petri Sifoane Capcane Proprietăţi 2 Modelarea fluxurilor de lucru: reţele workflow Reţele workflow 3

Mai mult

Microsoft Word - TIC5

Microsoft Word - TIC5 CAPACITATEA CANALELOR DE COMUNICAŢIE CAPITOLUL 5 CAPACITATEA CANALELOR DE COMUNICAŢIE În Capitolul 3, am văzut că putem utiliza codarea sursă pentru a reduce redundanţa inerentă a unei surse de informaţie

Mai mult

02. Analiza matematica 3 - MI 2

02. Analiza matematica 3 - MI 2 FIȘA DISCIPLINEI 1. Date despre program 1.1. Instituția de învățământ superior Universitatea de Vest din Timișoara 1.2. Facultatea Matematică și Informatică 1.3. Departamentul Matematică 1.4. Domeniul

Mai mult

Slide 1

Slide 1 Bazele electrotehnicii BAZELE ELECTOTEHNC BE An - ETT CS 4 Conf. dr.ing.ec. Claudia PĂCA e-mail: Claudia.Pacurar@ethm.utcluj.ro Bazele electrotehnicii CCTE ELECTCE DE CENT CONTN 7. Teoreme de rezolvare

Mai mult

Microsoft Word - matem_aplicate in Economie aa FD Bala.doc

Microsoft Word - matem_aplicate in Economie aa FD Bala.doc FIŞA DISCIPLINEI ANUL UNIVERSITAR 05-06. DATE DESPRE PROGRAM. Instituţia de învăţământ superior UNIVERSITATEA DIN CRAIOVA. Facultatea Economie și Administrarea Afacerilor.3 Departamentul Management, Marketing

Mai mult

Probleme rezolvate de fizică traducere de Nicolae Coman după lucrarea

Probleme rezolvate de fizică traducere de Nicolae Coman după lucrarea Probleme rezolvate de fizică traducere de Nicolae Coman după lucrarea Contents Vectori... 4 Modul de rezolvare a problemelor... 5 despre vectori... 6 Vector deplasare... 12 Vector viteza... 12 Statica...

Mai mult

Curs 10 Aplicaţii ale calculului diferenţial. Puncte de extrem 10.1 Diferenţiale de ordin superior S¼a trecem acum la de nirea diferenţialelor de ordi

Curs 10 Aplicaţii ale calculului diferenţial. Puncte de extrem 10.1 Diferenţiale de ordin superior S¼a trecem acum la de nirea diferenţialelor de ordi Curs 0 Aplicaţii ale calculului diferenţial. Puncte de extrem 0. Diferenţiale de ordin superior S¼a trecem acum la de nirea diferenţialelor de ordin superior. De niţia 0.. Fie n 2; D R k o mulţime deschis¼a

Mai mult

Algebra si Geometri pentru Computer Science

Algebra si Geometri pentru Computer Science Natura este scrisă în limbaj matematic. Galileo Galilei 5 Aplicatii liniare Grafica vectoriala In grafica pe calculator, grafica vectoriala este un procedeu prin care imaginile sunt construite cu ajutorul

Mai mult

Aero-BCD, , Prof. L. Costache & M. Olteanu Notițe de Adrian Manea Seminar 5 Șiruri și serii de funcții. Serii de puteri 1 Șiruri de funcții D

Aero-BCD, , Prof. L. Costache & M. Olteanu Notițe de Adrian Manea Seminar 5 Șiruri și serii de funcții. Serii de puteri 1 Șiruri de funcții D Seminar 5 Șiruri și serii de funcții. Serii de puteri Șiruri de funcții Definiţie.: Fie (f n ) n un șir de funcții, cu fiecare f n : [a, b] R și fie o funcție f : [a, b] R. PC Spunem că șirul (f n ) converge

Mai mult

Teoria Grafurilor şi Combinatorică recapitulare Principii de numărare Reţineţi că: P (n, r) este numărul de şiruri (sau r-permutări) de forma A 1,...,

Teoria Grafurilor şi Combinatorică recapitulare Principii de numărare Reţineţi că: P (n, r) este numărul de şiruri (sau r-permutări) de forma A 1,..., Teoria Grafurilor şi Combinatorică recapitulare Principii de numărare Reţineţi că: P (n, r) este numărul de şiruri (sau r-permutări) de forma A,..., A r unde A,..., A r sunt elemente distincte dintr-o

Mai mult

CURBE BÉZIER În CAGD se utilizează adesea curbele polinomiale, adică acele curbe definite de o parametrizare polinomială: C : [a, b] R 3 C(t) = (x(t),

CURBE BÉZIER În CAGD se utilizează adesea curbele polinomiale, adică acele curbe definite de o parametrizare polinomială: C : [a, b] R 3 C(t) = (x(t), CURE ÉZIER În CAGD se utilizează adesea curbele polinomiale, adică acele curbe definite de o parametrizare polinomială: C : [a, b] R 3 C(t) = (x(t), y(t), z(t)) cu x, y, z polinoame de grad n. Maximul

Mai mult

ExamView Pro - Untitled.tst

ExamView Pro - Untitled.tst Class: Date: Subiecte logica computationala licenta matematica-informatica 4 ani Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Fie formula

Mai mult

MergedFile

MergedFile PROIECT DIDACTIC Clasa a VII-a Matematică Proiect didactic realizat în cadrul programului - pilot Digitaliada, revizuit de Simona Roșu, profesor Digitaliada Textul și ilustrațiile din acest document începând

Mai mult

Investeşte în oameni

Investeşte în oameni FIŞA DISCIPLINEI 1 1. Date despre program 1.1 Instituţia de învăţământ superior Universitatea Politehnică Timișoara 1. Facultatea / Departamentul 3 Facultatea de Inginerie Hunedoara / Inginerie Electrică

Mai mult

BARAJ NR. 1 JUNIORI FRANŢA ianuarie Fie x şi y două numere întregi astfel încât 5x + 6y şi 6x + 5y să fie pătrate perfecte. Arătaţi că

BARAJ NR. 1 JUNIORI FRANŢA ianuarie Fie x şi y două numere întregi astfel încât 5x + 6y şi 6x + 5y să fie pătrate perfecte. Arătaţi că BARAJ NR. 1 JUNIORI FRANŢA 019 9 ianuarie 019 1. Fie x şi y două numere întregi astfel încât 5x + 6y şi 6x + 5y să fie pătrate perfecte. Arătaţi că x şi y sunt divizibili cu 11.. Fie Γ un cerc de centru

Mai mult

Curs 3 Permutari cu repetitie. Combinari. Algoritmi de ordonare si generare

Curs 3  Permutari cu repetitie. Combinari.  Algoritmi de ordonare si generare Curs 3 Permutări cu repetiţie. Combinări. Algoritmi de ordonare şi generare Octombrie 2015 Cuprins Algoritmi de ordonare şi generare pentru permutări cu repetiţie Reprezentarea binară a submulţimilor Algoritmi

Mai mult

FIŞA DISCIPLINEI 1. Date despre program 1.1 Instituţia de învăţământ superior Universitatea Alexandru Ioan Cuza din Iaşi 1.2 Facultatea Facultatea de

FIŞA DISCIPLINEI 1. Date despre program 1.1 Instituţia de învăţământ superior Universitatea Alexandru Ioan Cuza din Iaşi 1.2 Facultatea Facultatea de FIŞA DISCIPLINEI 1. Date despre program 1.1 Instituţia de învăţământ superior Universitatea Alexandru Ioan Cuza din Iaşi 1.2 Facultatea Facultatea de Matematică 1.3 Departamentul Matematică Didactic 1.4

Mai mult

Microsoft Word - 4_Fd_Teoria_sist_I_2013_2014_MLF_Calc

Microsoft Word - 4_Fd_Teoria_sist_I_2013_2014_MLF_Calc FIŞA DISCIPLINEI 1. Date despre program 1.1 Instituţia de învăţământ superior Universitatea Sapientia din Cluj-Napoca 1.2 Facultatea Ştiinţe Tehnice şi Umaniste 1.3 Departamentul Inginerie Mecanică 1.4

Mai mult

Grafuri - Concepte de baza. Tipuri de grafuri. Modalitati de reprezentare

Grafuri - Concepte de baza. Tipuri de grafuri. Modalitati de reprezentare Concepte de bază. Tipuri de grafuri. Modalităţi de reprezentare Mircea Marin Departamentul of Informatică Universitatea de Vest din Timişoara mircea.marin@e-uvt.ro 9 noiembrie 2018 Introducere Ce este

Mai mult