Limite de funcţii reale

Mărimea: px
Porniți afișarea la pagina:

Download "Limite de funcţii reale"

Transcriere

1 ( =, a b ) + a + b o 3 L + M L + M = + = + a + b b a + a + b + A A L + M = = + + ( + + )( + ) + + o = Limita uei fucţii îtr-u puct Vom prezeta coceptul de "limită a uei fucţii îtr-u puct" care este o geeralizare aturală a limitei uui şir umeric şi apoi, coceptul de "fucţie cotiuă îtr-u puct" care este u caz particular de fucţii cu limită. Ideea cetrală a faptului că o fucţie f : A are limita u elemet l î puctul este eprimată pri aceea că, la orice puct A apropiat de, imagiea sa pri f, otată f(), să fie suficiet de apropiată de l. Fucţia f este cotiuă î A, dacă la orice două pucte apropiate ître ele şi vecie cu corespud imagii pri f apropiate ître ele. Defiiţia III.5. Fie A o mulţime oarecare evidă şi puct de acumulare petru A (deci A mulţimea tuturor puctelor de acumulare petru A di ) şi f: A, elemetul l. ] Fucţia f are limită î puctul egală cu l, otată, lim f umai dacă, avem: ( III.5 ), a.î. { } V V l U V U A f V = l, dacă şi 8

2 ] Fie B A B şi. Dacă eistă lim ( B ) f = l atuci spuem că "l este limita lui f î relativ la mulţimea B", otată: lim B ( ) f = l l.. Codiţia Observaţii: A B şi respectiv e asigură că eistă pucte A cu a.î. ( { } ) au imagii U A f pri f: A.. Puctul A poate fi A sau A (respectiv B sau B). 3. Fucţia " f u are limită î " sau lim f ( III.6 ) l, V V(l), U V( ), { } limită). Fie, dacă şi umai dacă: ( ) a.î. U A f V Teorema III.5. (Teoremă de caracterizare petru fucţii cu sut echivalete: (i) lim f (ii) A, A l f A. Următoarele afirmaţii, şi : = l (defiiţia cu veciătăţi defiiţia III.5), (, ) a.î. cu (, ) (, ) = <ε( ; ) ε > δ ε A < d = < δ d f l f l l A A, şi f l. (iii) Demostraţie (i) (ii) Dacă (i) adevărată petru ε > dat luăm (, ) V şi V V = l ε l+ε l U care poate fi de forma: U = δ, +δ cuδ> corespuzător lui ε şi astfel îcât: ( { }), A U d f l = f l <ε tocmai (ii). 8

3 A cu (ii) (iii) Presupuem (ii) adevărată şi fie ( ). Petru ε > dat alegem ( ) şi ( ii) δε, > a. î. δ < d, = <δ d f, l = f l <ε adică f ( ) l şi (iii) adevărată. (iii) (i) Fie (iii) adevărată şi demostrăm implicaţia pri metoda reducerii la absurd. Presupuem (i) falsă, { } V V ( l) a.î. U V A U f V. Petru luăm: U =, + = A < d(, ) < şi alegem U ( A { }) a. î. f V cu A, şi f l este absurd, deoarece avem (iii) A, şi f l. Î cocluzie adevărată, (i) este adevărată şi avem echivaleţa afirmaţiilor di euţ. Observaţii:. După teorema precedetă, (ii) este teorema de caracterizare a limitei cu (ε - δ) şi (iii) este teorema de caracterizare a limitei cu şiruri, fiecare ditre ele poate fi cosiderată defiiţie petru limita uei fucţii î puct.. Î multe demostraţii ale proprietăţilor uei fucţii cu limită se foloseşte caracterizarea cu şiruri (iii) care reduce aceste proprietăţi la proprietăţile uor şiruri umerice covergete deja demostrate. 3. Echivaleţa (ii) (iii) se umeşte criteriul Heie. 8

4 Teorema III.6 (Criteriul Cauchy-Bolzao). Fie A, A, f : A şi l şi umai dacă: ( III.7). Atuci: l lim f ( ) A { } =, dacă ε >, δ ε, > a.î. şi. cu <δ, <δ f ( ) f ( ) <ε Demostraţie: (Necesitatea) Fie l lim f eistă { } f = şi ε >, deci δ ε, > a.î. A d(, ) = < δ ε l < ; petru:, A { } cu <δşi <δ ε ε f ( ) f ( ) f ( ) l + l f ( ) < + =ε (III.7) adevărată. (Suficieţa) Presupuem (III.7) adevărată şi cosiderăm A { } cu lim = adică eistă N a. î. <δ petru (δ > şi ε > di (III.7)). Petru p, avem + p <δpetru deoarece ( ) coverget î ( ) şir Cauchy şi obţiem di (III.7) f ( + p) f <ε, şi p (f( )) este şir Cauchy di (f( )) şir coverget î l a. î. lim f ( ) = l şi să arătăm că lim f = l. Di lim f ( ) = l rezultă că eistă N ε N a. î. N ε avem f ( ) l, Fie { } ε < ε>. A cu <δ, alegem ε = ma {, N ε } şi petru ε f l f f( ) + f( ) l <ε ε ε lim f = l după caracterizarea cu (ε - δ). 83

5 Observaţii:. Cosiderăm B A B { A } cu = < şi presupuem că B atuci lim f lim f f ( ) lui f î. B <. Cosiderâd B atuci lui f î. 3. Dacă B > ot ot = = = l se umeşte limita la stâga a s A cu B = { A > } şi presupuem că ot ot B lim f = lim f = f( + ) = l se umeşte limita la dreapta a este puct de acumulare al mulţimilor B { A } = { > }, atuci eistă lim f B A eistă d f şi f ( + ) şi sut egale. ( lim lim f = f = f = f + = l ) < > = < şi = l dacă şi umai dacă, 4. Limita uei fucţii î puct este o oţiue locală deoarece eisteţa şi valoarea ei depid de comportarea fucţiei pe o veciătate a puctului respectiv. 5. Orice fucţie f : A lipschitziaă are limită fiită î fiecare (după teorema Cauchy - Bolzao). Teorema III.7. Fie limită fiită î, atuci avem: A, A f g A şi, : A care admit 84

6 ( p ) lim f ± g = lim f ± lim g ( p ) f f ( p ) lim f g lim f lim g 3 { } ( p ) 4 5 lim λ =λlim, λ lim = dacă g lim g p Dacă lim f, U V a.î. A U f cu V V f lim f = ( ) g şi, lim g, V A Demostraţia este directă folosid caracterizarea limitei cu şiruri şi operaţiile algebrice cu şiruri covergete î Observaţii:. Teorema III.7. este valabilă dacă f şi g au limită î cu respectarea coveţiilor privid operaţiile algebrice cu elemete di, precizate î defiiţia mulţimii.. Eemple: o f ( ) = sig cu u are limită î = deoarece f f + = =. o ; Q Fucţia Dirichlet: f = u are limita î ici u puct ; -Q.( Q f ( şi ) ( y -Q, y f ( y ) ) ). Defiiţia III.6 I] Fie A, A f A, l atuci avem: şi : 85

7 ( III.8) = c>, δ c, > a.î. Acu def lim f =+ ( 6 ) < <δ > def lim f 6 II] Dacă A { } ( III.9) + şi l, avem:, f c c<, δ c, > a.î. Acu < <δ f < c def ε>, δ ε > a.î. Acu lim f = l ( 7 ) > δε f l <ε def ε >, δ ε > a.î. A cu lim f = l ( 7 ) <-δε f l <ε Observaţii:. Di (III.8) şi (III.9) se pot caracteriza şi următoarele situaţii: =± lim f ; lim f =±. a ; = m b a a P a + + L m lim lim a = = sig ; m Q b m b > m b b + + L m ; < m Teorema III.8. Fie ( ) { } AB, A f A g B,, : şi : cu f A { } B l. Dacă eistă lim f l, l B lim g ( ) = l, atuci eistă lim ( go f ) = l. Demostraţie: = şi eistă Fie ( ) A, şi, otăm, ipoteza: 86 f = y f A. După

8 ( { }) { } { } f A B l y B l şi cum lim f = l avem lim y = l g l g y l g f = o l lim Cum eistă lim go f = l. Observaţii:. Dacă { } ( ) { } f A B l este îlocuită cu f(a) B, atuci cocluzia u este totdeaua adevărată. ; Q ; =.Eemplu: f = şi g = atuci: * ; -Q ; ; Q g o f = Avem ; -Q. lim f = = l şi lim g = = l, dar lim go f. u eistă afirmaţiile: Teorema III.. Fie i) Dacă f g, Aşi eistă A, A şi f, g, h: A. Au loc lim g ii) Dacă U V ( ) a.î. f este mărgiită pe A U { } = atuci f g lim g lim =. =, atuci f şi iii) Dacă g f h, A şi eistă lim atuci eistă lim f = l. Demostraţie: (iii) Fie, g f h eistă lim f ( ) = l lim g lim = = lim h = l, A, cu şi atuci avem şi eistă lim g( ) = lim h( ) f = l. 87 = l, deci

9 (i) Dacă f g, A lim f =. (ii) f mărgiită M > a. î. ( iii) f g lim f = lim g = f M, { } () i f g M g lim f g = A U U A A U lim g = U A f g Fie lim =. Defiiţia III.7. A o mulţime, A şi U A U şi atuci: V ( ), iar f : A o fucţie. ] Elemetul sup U V ( ) if a fucţiei f î, otată: def { f ( A U { } )} U V { ( { } )} III. lim f = sup if f A U = l ] Elemetul if sup{ f ( A U { } )} ν U a fucţiei f î, otată: { ( { } )} def lim f = if sup f A U = l U V Observaţii:. Elemetele lim f şi lim f. Eemple o se umeşte limita iferioară se umeşte limita superioară eistă totdeaua, fiite sau ifiite. lim f = = l f = sig, lim f = = l 88

10 lim f f = o, lim f =. = + 3 o ; Q f = fucţia Dirichlet ; -Q lim f =. lim f = Teorema III.. Fie A, loc afirmaţiile: (i) lim f lim f ; f : A. Atuci au A şi (ii) Eistă lim lim lim = = = f l f f l l. Demostraţie: (i) este coseciţă directă di defiiţia limitelor etreme ale lui f î. (ii) Se deduce folosid defiiţia limitei î puct cu veciătăţi şi defiiţiile limitelor etreme î puct. 3. Fucţii cotiue Fucţiile cotiue sut u caz particular de fucţii care au limită. Coceptul de cotiuitate este o ipoteză fudametală î studiul uor feomee di realitate, dar de multe ori apar şi feomee care prezită discotiuităţi; proprietăţile uui feome discotiu se vor studia pri aproimarea acestuia cu alt feome cotiu. Defiiţia III.8. Fie A, Aşi f : A ] Fucţia f este cotiuă î A, dacă şi umai dacă, { V V III. V f, U a.î. A U f V 89

11 ] Fucţia f este cotiuă pe mulţimea A sau f este fucţie cotiuă dacă f este cotiuă î A. 3] Dacă f u este cotiuă î A, spuem că f este fucţie discotiuă î şi se umeşte puct de discotiuitate al fucţiei f di A. Teorema III.. (Teoremă de caracterizare petru fucţii cotiue îtr-u puct). Fie A, Aşi f : A. Următoarele afirmaţii sut echivalete: (i) f cotiuă î A (defiiţia cu veciătăţi defiiţia III.8). (ii), ( δ ε) ε >, δ ε, > a.î. Acu d, = < δ d f f = f f <ε ( caracterizarea cotiuităţii î puct cu ) Acu f f (iii) (caracterizarea cotiuităţii î puct cu şiruri) Demostraţia teoremei se obţie direct di teorema III. de caracterizare a fucţiilor cu limită î puct luâd: A, l = f ( ). şi avem: (i) (ii); (ii) (iii); (iii) (i). Coseciţa II.5. Dacă f : A este cotiuă î A, atuci avem: III.3 lim f = f lim = f petru A,. Demostraţia este directă di (iii) şi coduce la (III.3). Egalitatea (III.3) eprimă faptul că, operaţia de trecere la limită permută cu f, dacă f este o fucţie cotiuă î puct. Teorema III.. Fie A, Aşi f : A, atuci avem: (I) Dacă, f cotiuă î eistă lim f = f ( ) A A 9

12 (II) Dacă A puct izolat, f este cotiuă î. Demostraţie: (I) Fie A A şi f cotiuă î ( iii), ( ) A f ( ) f ( ) A { }, f f lim f f ( ) =. (II) Fie def A puct izolat U V ( ) a. î. A U = {} şi fie A,cu, atuci eistă a. î. U, deci =, şi avem f ( ) = f ( ) deci f ( ) f ( ) iar f cotiuă î. f : I. Defiiţia III.9. Fie I iterval, puct iterior di I şi ] Puctul I este puct de discotiuitate de prima speţă dacă f este discotiuă î şi eistă limitele laterale î puct fiite: (, ) f f +. ] Puctul I este puct de discotiuitate de speţa a doua dacă este puct de dicotiuitate a lui f şi u este puct de discotiuitate de prima speţă ( f ( ) sau f ( + ) sau ( ) f ( + ) sau f ( + ) ). f şi f ( + ) sau f sau f şi 9

13 Observaţii:. Fie fucţia f : A, A. Defiiţia limitei lui f î are ses umai petru A. Cotiuitatea lui f î are ses umai dacă A. Dacă A A fucţia f poate fi cotiuă î, dar u are ses limita lui f î, A A.. Puctul A, petru f : A se umeşte puct de discotiuitate aparetă sau discotiuitate eeseţială sau discotiuitate elimiabilă petru f dacă eistă lim f şi limf f. Î acest caz se asociază lui f o fucţie cotiuă pe A care diferă de f umai î puctul A. 3. Dacă eistă ( ) Acu, A şi şirul ( ) f u are limită î sau limita sa este diferită de f ( ), atuci f este discotiuă î A. 4. Fie f : A şi B A, dacă f este cotiuă î, atuci f B este cotiuă î. Au loc situaţiile speciale: eistă eistă I B { A } < = < A şi f este cotiuă la stâga î A lim f = f( ) II B { A } > f cotiuă î A. B = > Aşi f este cotiuă la dreapta î A lim f = f( ) f cotiuă î A. B def def 5. Di teorema precedetă şi observaţia de mai sus, au loc echivaleţele: 9

14 f cotiuă î A lim f = f = f < şi lim f = f + = f > f cotiuă la stâga î A şi f cotiuă la dreapta î A 93 = lim f f 6. Eemple o f : A cu f () = 3, A = [-,] f cotiuă pe A. ; A =ϕ = fucţia caracteristică a mulţimii A = [,], ; A o f ( ) [ ] este cotiuă pe (,) şi î: = şi = are pucte de discotiuitate de prima speţă. cu. Fie - {,} fiat, I Dacă (,) atuci eistă a.î. (,) şi petru, f ( ) =, deci f ( ) = f () şi f cotiuă î (,). II Fie < cu şi () fiat, atuci f ( ) = lim f = f ( ) = şi cum lim f = f ( + ) = de ude rezultă < > că = este puct de discotiuitate de prima speţă. La fel se arată că = este puct de discotiuitate de prima speţă. 3 o ; Q Fucţia Dirichlet f :, f = este discotiuă î ; -Q şi este puct de discotiuitate de speţa a doua. Fie fiat şi presupuem, f este cotiuă î. Petru Q ( ) cu, avem: f ( ) = f ( ), deci f ( ) =.

15 Q Petru y şi y avem = f y f deci f = deci ( ) f = şi este absurd f este discotiuă î f discotiuă pe. Dacă luăm Q cu şi petru şi < atuci f f ( ) lim = = < y cu y Q, y < avem lim f = f ( ) = < u eistă f ( ) şi la fel u eistă dicotiuitate de speţa a doua. f + este puct de 4 o ; Q Fucţia F: cu F = = f ude f fucţia ; -Q Dirichlet. Fucţia F este cotiuă î =. Petru cu avem: F( )=, dacă Q şi F ( ), N atuci după criteriul majorării = F( ) F î rest la fel ca f. deci F este cotiuă î = şi discotiuă 4. Proprietăţi ale fucţiilor cotiue pe mulţimi di Defiiţia III.. Fie A, B şi f: A B. Fucţia f se umeşte fucţie omeomorfă (sau f este u homeomorfism) dacă: (I) f bijectivă; (II) f şi f sut fucţii cotiue. Teorema III.3. Fie I iterval şi f : I o fucţie local costată, atuci f este costată. 94

16 Demostraţie: Fie I fiat şi f local costată pe I def U V() a. î. f I U este o fucţie costată, deci f este cotiuă şi î particular f este cotiuă pe U I, deci f cotiuă pe I. Fie a, b I cu a < b elemete { ab, f f ( a ) } fiate şi mulţimea A= [ ] [ ab, ] eistă A cu c avem f ( c) lim f ( ) f = cu A. Notăm c=supa,, deci f ( ) = f ( a ),. Cum f este cotiuă, = = a şi c A. Dacă c< b, eistă δ > a. î. I c = [c - δ, c + δ] [a, b] şi f I c este costată, deci f [ ac, +δ] =f(a) şi c + δ A, dar c = sup A c + δ, absurd. Î acest caz avem c = b, deci f(b) = f(c) = f(a) şi f este costată. Teorema III.4. (Teorema lui Bolzao) Fie I iterval şi f : I o fucţie cotiuă, atuci f(i) este iterval. y, y Demostraţie:, iar Fie y, y J = f( I) cu y < y şi λ cu y <λ< y fiaţi. Di y y J rezultă că eistă a,b I cu f ( a) = y, f ( b) = y şi, { } presupuem a< b. Fie A = [ a, b] f λ şi c = supa, atuci eistă ( ) A cu c şi deci f( ) λ,. Fucţia f este cotiuă pe I, deci f este cotiuă î c şi avem: f c f ( ) () = lim λ. Dar λ < f(b) şi atuci c < b. Avem f() λ î (c, b]. Dacă( z ) (c, b) cu z c fiat, atuci f(z ) λ, şi f c f ( z ) () = lim λ. Di f(c) λ şi 95

17 f(c) λ rezultă λ = f(c) J. Di [ y, y ] y, y J şi y < λ< y cu λ J, rezultă J, şi J este iterval (coform defiiţiei oţiuii de iterval). Coseciţa III.6. Fie I iterval şi f : I fucţie cotiuă, atuci f are proprietatea Darbou pe I. Demostraţie: Dacă I I este iterval, după teorema precedetă, f (I ) este iterval şi deci f are proprietatea Darbou pe I. Coseciţa III.7. Fie I iterval şi f : I fucţie cotiuă, atuci au loc afirmaţiile: () Dacă, I şi f ( ) f ( ) <, atuci eistă cel puţi u puct c ître şi astfel îcât f (c) = (Teorema itersecţiei a lui Cauchy). () Dacă f, I atuci avem f > pe I, sau f < pe I. (3) Ecuaţia a ( a ; ) (rădăciă) reală. = admite cel puţi o soluţie Demostraţie: Afirmaţia () rezultă di coseciţa precedetă î cazul λ =. Afirmaţia () este coseciţă directă di (). Petru (3) fie f = a, o fucţie cotiuă şi avem: f()= - a < şi f ( a+ ) = = ( + a) a> + a a>, atuci eistă ( a ) f ( ) a = ;, + cu = deci este o soluţie reală a ecuaţiei a ( a ; ) =. Teorema III.5. Fie A o mulţime compactă şi f : A o fucţie cotiuă, atuci f (A) este mulţime compactă. Demostraţie: f(a) este compactă ( y ) f( A) subşir y y f( A). Dacă y f A petru atuci eistă k coţie u 96

18 Apetru a.î. y f ( ) ( ) ( ) k a.î. k k =. Mulţimea A fiid compactă eistă c A şi cum, f este cotiuă pe A, avem: ( ) lim y = lim f = f c f A deci f (A) este mulţime compactă î k k k k. Teorema III.6. (Teorema lui Weierstrass). Fie A o mulţime compactă şi f : A o fucţie cotiuă, atuci f este mărgiită şi îşi atige margiile pe A. A compactă f cotiuă pe A Demostraţie: f ( A) compactă f ( A ) mulţime îchisă şi mărgiită f mărgiită pe A şi sup f(a), if f (A) f(a) f mărgiită şi eistă, A a.î. f ( ) f () f ( ), A, adică if f (A) = f ( ) şi sup f (A) = f ( ). Coseciţa III.8. Fie I iterval compact şi f : I fucţie cotiuă, atuci f (I) este iterval compact di. Demostraţie: f (I) iterval compact dacă eistă, I a. î. f (I) = =[ f ( ), f ( )] şi după teorema Weierstrass avem: f ( ) f() f ( ), I cu f ( ) = if f(a) şi f ( ) = sup f(a). Teorema III.7. Fie I iterval şi f : I fucţie mootoă şi puct iterior al lui I, atuci au loc afirmaţiile: (i) f (, ) f ( ) + şi avem: (III.4) f ( ) f ( ) f ( ) +, iterior lui I (ii) f are umai pucte de discotiuitate de prima speţă. Demostraţie: Presupuem f crescătoare pe I. 97

19 (i) Fie ( ) I, şir crescător şi,, avem f( ) f( + ), adică (f( )) este şir crescător; di <, rezultă f( ) f( ),, adică (f( )) este majorat. După teorema de covergeţă a şirurilor mootoe rezultă (f( )) coverget î şi lim f ( ) f ( ) adică lim f( ) = f, deoarece, N. La fel se arată că eistă = + cu lim f( ) f, şi şir descrescător şi. Î aceste codiţii are loc iegalitatea (III.4). (ii) Di (i) rezultă că î orice I puct iterior eistă f (, ) f ( ) + şi dacă f ( ) f ( ) +, f u este cotiuă î, iar este puct de discotiuitate de prima speţă. Teorema III.8. Fie I iterval şi f : I fucţie mootoă, astfel îcât f ( I ) este iterval ( f are proprietatea Darbou pe I), atuci f este cotiuă pe I. Demostraţie: Presupuem f mooto crescătoare pe I şi otăm a = if I, b = sup I. Petru I {a} fiat după teorema precedetă eistă f (, ) f ( ) + şi are loc iegalitatea (III.4). Cosiderăm ( ) < ( ) şi fie y fiat cu f ( ) y f f f < < ; deoarece f ( I ) = J este iterval rezultă că y J şi atuci eistă u puct I-{ }a. î. y = f( ). Dacă <, avem că f f = sup f( ) deci y f < y ceea ce este absurd. Dacă >, avem b, atuci < I ( + ) di (III.4), adică f f f y = f f > y, 98

20 absurd. Î aceste codiţii avem f ( ) f = adică f este cotiuă la stâga î şi î mod aalog f ( ) f + = adică f este cotiuă la dreapta î. Cum I puct iterior şi arbitrar, rezultă f fucţie cotiuă pe I. Observaţii:. Teorema lui Bozao şi cosecita sa (coseciţa III.6), poartă deumirea de "Teorema valorilor itermediare" care este o teoremă de surjectivitate petru f: I J cu f ( I ) = J iterval.. eciproca teoremei Bolzao, î geeral u este valabilă, adică eistă fucţii discotiue pe u iterval care luâd două valori oarecare, vor lua toate valorile itermediare î raport cu acestea. 3. Di teorema Bolzao şi coseciţa sa rezultă că fucţiile cotiue pe u iterval au proprietatea Darbou, dar u este î geeral valabilă şi implicaţia reciprocă. 4. Dacă I, J sut itervale şi f: I J este o fucţie mootoă surjectivă atuci f este cotiuă. Teorema III.9. Fie I, J itervale şi o fucţie f: I J. Următoarele afirmaţii sut echivalete: omeomorfe.. f omeomorfă;. f strict mootoă şi surjectivă; 3. f cotiuă şi bijectivă. Demostraţie: Implicaţia 3 este directă di defiiţia fucţiilor 3 Fucţia f: I J cotiuă pe I iterval are proprietatea Darbou pe I şi cum f bijectivă, deci f este ijectivă, rezultă că f este strict mootoă pe I şi surjectivă. 99

21 Fucţiile f: I J şi f : J I sut strict mootoe şi surjective, după observaţia 4 ele sut fucţii cotiue, deci f este omeomorfă. Observaţii:. Dacă I şi J sut itervale omeomorfe ître ele şi I este îchis, deschis, semideschis, emărgiit etc. atuci J este de aceeaşi formă.. Dacă I u este iterval, atuci u au loc î geeral echivaleţele 3 di teorema precedetă (teorema III.9). Eemplu: A = [-, -] {} [, ] şi J = [-, ] iar f: A J dată pri [ ] + ;, f = ; =. Fucţia f este cotiuă, strict mootoă, ; [, ] surjectivă, iar f este discotiuă î y = ; Defiiţia III.. Fie A, B cu f : A o fucţie cotiuă. f y y [ ) y ; y, = ; =. y + ; y (,] A B două mulţimi şi ] Fucţia f poate fi prelugită pri cotiuitate pe B, dacă eistă g: B cotiuă astfel îcât f = g. ] Dacă B= A { }, fucţia f poate fi prelugită pri cotiuitate î A, dacă eistă g: B cotiuă astfel îcât f = g. A Teorema III.. Fie A, f : A o fucţie cotiuă. Eistă o fucţie uică g: A cotiuă astfel îcât g A = f, dacă şi umai dacă, puct de acumulare petru A şi A, eistă lim f fiită

22 ( A = mulţimea puctelor aderete lui A care coţie: A, puctele aderete lui A (puctele de acumulare şi puctele izolate)). Demostraţie Fie B = A, g: B fucţie cotiuă cu g A = f, atuci (puct de acumulare petru A) cu A şi puct de acumulare petru B, atuci lim g = g petru că g cotiuă pe B şi avem f g g( ) prelugire. lim = lim A = şi f este cotiuă î pri Fie g: A dată pri g = f, Aşi g = lim ft, puct de acumulare petru A şi A. Avem: lim f g( ) t = î orice puct de acumulare petru A. Dacă este puct de acumulare petru A şi A, avem: lim g( ) = lim f( t).dacă A şi este puct de acumulare, avem t f = f = g. Cosecita III.9. Fie A, f: A şi - A. ] Dacă u este puct de acumulare petru A, f poate fi prelugită pri cotiuitate î pri g: B cu B = A { } şi g() = f(), A, luâd g( ) arbitrar di. ] Dacă este puct de acumulare petru A, f poate fi prelugită pri cotiuitate î, dacă şi umai dacă, eistă lim f şi este fiită. Î acest caz g( ) = lim f cu f: B şi B = A { }. 3] Dacă A = (a, b) şi f: (a, b) este cotiuă şi mootoă atuci f poate fi prelugită (î mod uic) pri cotiuitate pe [a, b], dacă şi umai dacă, f este fucţie mărgiită.

23 Demostraţie: Afirmaţiile ] şi ] rezultă di defiiţia III. şi teorema precedetă (teorema III.3). 3] Cum f este motoă eistă f( a+ ) şi f (b- ) şi f mărgiită, atuci f( a+ ), f (b- ) şi defiim f(a) = f( a+ ) şi f(b) = f (b- ). Eemple o si f, = se poate prelugi pri si cotiuitate î = deoarece eistă lim =. f = u poate fi prelugită pri cotiuitate î = o sig, ( f ( + ) = f ( ) = sau lim ) f 3 Fucţia tagetă u poate fi prelugită pri cotiuitate î puctele π k = + kπ, k Z (u eistă lim ). tg k f cu = u poate fi prelugită pri cotiuitate î = 4 o (u eistă lim f Teorema III.3. Fie î, atuci fucţiile:, deşi = este puct de acumulare petru *). A, Aşi f, g: A f f ± g, λ f ( λ ), f g, ( g, A), (III.5) g g f,ma{ f, g},mi{ f, g}, f (dacă are ses) sut cotiue î A. Demostraţie: Fie ( ). fucţii cotiue A cu, atuci avem: ( f g)( ) f ( ) g( ) f ( ) g( ) lim ± = lim ± lim = ±. lim ( f )( ) lim f ( ) f λ =λ =λ.

24 ( fg)( ) f ( ) g( ) f ( ) g( ) lim = lim lim =. ( ) ( ) f lim f f lim ( ) = = g lim g g lim = lim = ( ) f f f. f + g+ f g f + g f g Avem: ma{ f, g} =, mi{ f, g} = care sut fucţii cotiue î deoarece f + g şi f - g sut fucţii cotiue î. Observaţii:. Defiim f + = ma{ f, } şi f = ma{ f,} + şi atuci f = f f cu f: A.. Fucţia f este cotiuă î, dacă şi umai dacă, f + şi f sut cotiue î. 3. Dacă f este cotiuă î, u rezultă umaidecât că f este cotiuă î. ; Q Eemplu: f: cu f = este discotiuă pe ; -Q şi f =, este cotiuă pe. Teorema III.3. Fie AB,,şi f: A B, g: B fucţii cotiue. Dacă f este cotiuă î A şi g este cotiuă î y = f B, atuci go f : A este cotiuă î A. Acu A şi f fiid cotiuă î Demostraţie Fie A, avem lim avem: f f y = =. Fucţia g este cotiuă î y B şi 3

25 deci lim lim lim go f este cotiuă î A. ( gof )( ) = g f ( ) = g f ( ) = g( y ) = ( gof )( ) Defiiţia III.3. Fie I iterval de capete ab, şi f:i o fucţie. Fucţia f este o fucţie riglată dacă I puct iterior eistă f( - ), f( + ) şi dacă a I eistă f(a - ), dacă b I eistă f(b + ) I (a, b capetele itervalului I). Teorema III.33. Fie I iterval, f: I o fucţie riglată, atuci f este local mărgiită pe I. Demostraţie: Fie I şi cum f este riglată eistă f( - ), f( +). Caracterizâd limitele laterale î puct cu (ε - δ), petru ε =, eistă V V( ) şi V I ( este puct iterior) a. î. să avem: f( + ) - f(), V cu > şi f( - ) - f(), V cu <. Î aceste codiţii V, avem: { } f ma + f( ); + f( + ); f f este mărgiită pe V şi cum I era puct arbitrar rezultă f local mărgiită pe I. La fel se face raţioametul î cazul a I şi respectiv b I, capetele itervalului. Teorema III.34. Fie I iterval şi f: I. Atuci au oc următoarele afirmaţii: (I) f este local mărgiită pe I, dacă şi umai dacă, f este mărgiită pe orice mulţime compactă A I. (II) Dacă f este fucţie riglată, atuci f este mărgiită pe fiecare mulţime compactă A I. (III) Dacă I = [a, b] şi eistă f(a + ), f(b - ), f( + ) şi f( - ), I ( puct iterior) fiite, atuci f este mărgiită pe I. (IV) Dacă I = [a, b] iterval compact, atuci au loc afirmaţiile: 4

26 (i) f mărgiită f local mărgiită; (ii) f riglată f mărgiită. Demostraţia î bibliografie ([4], [4]). Eemple:. Polioamele sut fucţii cotiue. Fucţiile raţioale sut fucţii cotiue.. Fucţiile trigoometrice directe şi fucţiile trigoometrice iverse sut fucţii cotiue. 3. Fucţia epoeţială f a ( a ; a ) pe * + este cotiuă. Fucţia logaritmică aplică omeomorf = > care aplică omeomorf f = log a> ; a care pe este cotiuă. Fucţia putere geeralizată l l ( a, a a a * * f = a = e = e ) care aplică omeomorf + pe + este cotiuă. * + Teorema III.35. Î au loc următoarele limite fudametale: a si ± l ( + ) a d lim = e lim = l a a> ; a l l lim = lim = ( a) lim = ( b) lim + = e ( c) lim( + ) ( f ) ( g) > () h lim = i lim = > = e Demostraţie: Vom folosi î uele cazuri teorema de caracterizare a limitei uei fucţii î puct cu şiruri. si π π : = şi cu V = -, avem si * (a) f, f V V tg ( măsurat î radiai). Petru obţiem: 5

27 cos si < < < < cos < < şi cum tg si si si lim cos = rezultă si lim =. Petru V- {}, si şi au acelaşi sem, deci si > si lim = care are următoarele cosecite tg directe: (a ) lim = ; (a ) lim = ; (a 3 ) lim =. si tg cu b) Fie ± atuci lim + = e. Presupuem şi după aioma lui Arhimede eistă p N a. î. p p + şi cum rezultă p, deci Di: p p + obţiem: p lim + = e p şi p + lim + = e. p + p p lim + = e. p p + Cum ( ) era u şir abitrar di, avem: lim + = e. ± (c) Fie f: A cu f lim( ) = + = e. Fie >, N şi, atuci y = + şi găsim: f ( ) ( ) y = + = + e deci y eistă lim f = lim + = e. Petru < N şi, atuci > > y = şi f ( ) ( ) y = + = + e y deci eistă 6

28 < < = ( + ) =e. Î aceste codiţii fucţia f ( ) lim f lim limită î = : lim f lim( ) ( + ) = + = e. l (d) lim = lim l ( + ) = l lim( + ) = l e=. = + are (e) Fie y = a cu şi a>, a, atuci fucţia y este strict crescătoare şi cotiuă pe cu ( + y) l a = y+ = şi avem: l a lim y =. Dar y = a ( + y) l l lim = lim = = di y y l a l a care rezultă: a y lim = lim l a = l a. y l ( + y) cu (f) Fie +, avem: [] [ ] +,, l[ ] l l([ ] + ) şi [ ] + [ ] l[ ] ([ ] + ) l[ ] [ ] + l < ([ ] + ) [ ] l ([ ] + ) [ ] şi cum avem: deci: l l l lim = = lim = lim =. l Cum lim l = şi lim = + lim =. > > > l (g) lim = lim e = lim e = e = l l > > > l lim = lim e = lim e = e =. 7

29 Defiiţia III.3. Fie A şi f : A. Fucţia f este uiform cotiuă pe A, dacă: ( ΙΙΙ.6. ) A A ε >, δ ε > (idepedet de ) a.î., cu = d, <δ d f, f = f f <ε Observaţii:. Noţiuea de fucţie cotiuă î A, depide de şi comportarea fucţiei f pe o veciătate a lui, deci are caracter local.. Noţiuea de fucţie uiform cotiuă pe A are caracter global. 3. Fucţia f u este uiform cotiuă pe A, dacă: ε >, N,, y Aa.î. y < ΙΙΙ. şi f f ( y) ε (.7) 4. Î relaţiile (III.6) de defiiţie a cotiuităţii uiforme pe A, δ depide umai de ε > şi u depide de A (δ este idepedet de A). Î cazul f cotiuă î A î caracterizarea cu (ε - δ), δ depide de ε şi de puctul A. 5. Eemple:. f = a+ b,, ab, şi a, avem: = <ε petru, cu < =δ( ε ) f f a A f este uiform cotiuă pe.. f() = si,, si este lipschitziaă pe. Deci: si si <δ=ε petru, f = si este uiform cotiuă pe. ε a 8

30 3. f =, (,) u este uiform cotiuă pe A = (, ). Pri reducere la absurd, se presupue că f este uiform cotiuă pe A = (,) şi atuci petru ε =, δ > cu < δ < a. î. <,, (,) cu < δ < deci, + δ δ (,δ). Fie = şi obţiem δ < este absurd deoarece δ (,) f u este uiform cotiuă pe A=(,). Teorema III.36. Dacă f : A este fucţie lipschitziaă, atuci f este uiform cotiuă pe A. def Demostraţie: f lipschitziaă pe A λ>,a.î., Aavem f f λ ε petru orice ε ε > şi δ= > f este uiform cotiuă pe A, coform defiiţei λ (III.6). Teorema III.37. Fie A şi f : A. Dacă f este fucţie uiform cotiuă pe A, atuci f este cotiuă pe A. Demostraţie: Fie A fiat şi A, cum f este uiform ε >, δ ε > a.î., Acu cotiuă avem: <δ f f <ε f cotiuă pe A. Observaţii:. Di ultimele două teoreme rezultă următoarele implicaţii: f cotracţie pe A f este fucţie lipschitziaă pe A f uiform cotiuă pe A f cotiuă pe A. 9

31 . Dacă f este uiform cotiuă pe B A cu B A, u rezultă obligatoriu f cotiuă pe B. Eemplu: Fie f : fucţia caracteristică a lui B = [,] = A, atuci f este uiform cotiuă pe B şi totuşi f u este cotiuă î = şi =, deci f u este cotiuă pe B. 3. Dacă f este cotiuă pe A, u implică f uiform cotiuă pe A. Eemplu: f uiform cotiuă pe A = (, ). afirmaţii: = este cotiuă pe A = (,), dar f u este Teorema III.38. Fie A şi f : A. Atuci au loc următoarele ] f este uiform cotiuă pe A, y A, N cu ( - y ) [f() f(y )]. ] Dacă f este uiform cotiuă pe A, ( ) f( ) di A, atuci ( ) este şir Cauchy. A şir Cauchy de elemete 3] Dacă f este uiform cotiuă pe A, atuci f are limită fiită î fiecare puct de acumulare al lui A. 4] Dacă f este uiform cotiuă pe A, atuci B A cu B mulţime mărgiită rezultă că f(b) este mulţime mărgiită. 5] Dacă f este uiform cotiuă pe A, atuci f poate fi prelugită pri cotiuitate î mod uic la o fucţie uiform cotiuă g: A ( A este îchiderea lui A, adică mulţimea puctelor aderete lui A). Demostraţie: ] Fie f uiform cotiuă pe A şi atuci ε > şi, y A, ( N) cu - y deci N a. î. - y < < η f( ) f(y ) < ε şi avem [f( ) f(y )].

32 Dacă are loc proprietatea ], presupuem că f u este uiform cotiuă pe A ε > cu proprietatea:,, y A cu - y < < şi f f(y ) ε adică ( y ) şi [f( ) f(y )] ceea ce cotrazice ipoteza (este absurd) f este uiform cotiuă pe A. ] Fie f uiform cotiuă pe A şi ( ) def A şir Cauchy δ>, δ N a.î. δ şi p, avem + p <δ dar atuci di defiiţia cotiuităţii uiforme a lui f pe A, rezultă: ( + p), δ şi f f <ε p * f( ) N ( ) este şir Cauchy di. 3] Fie puct de acumulare al lui A, atuci eistă ( ) A a. î. f( ) ( ) este şir Cauchy di A şi după ] ( ) este şir f( ) Cauchy di şi deci ( ) este şir coverget di lim f = l. ( y ) 4] Fie f(b) u şir fiat şi Mulţimea B este mărgiită şi atuci ( ) coverget ( k ) k B. Subşirul ( k ) k şir Cauchy di B şi după ] şirul f ( ) atuci ( f ( k )) k B a. î. y = f( ),. ( k ) k B coţie u subşir fiid coverget este este şir Cauchy di şi este şir mărgiit. Î aceste codiţii f(b) este mulţime compactă di, deci f(b) este mărgiită. Dacă A este mărgiită şi f:a B este uiform cotiuă pe A, atuci f(a) este mulţime mărgiită.

33 5] Fie puct de acumulare petru A fiat şi A. Di 4] rezultă că eistă lim f = l şi otăm l = g( ). Dacă A, atuci puem g( ) = f( ) şi determiăm g: A { } care este o prelugire a lui f. Să dovedim că g este fucţie uiform cotiuă. Fie ε > (fiat), eistă δ > a. î. f f <ε petru, Acu <δ. Fie, A A (, sut pucte aderete lui A care u sut î A) cu <δ, atuci ( ) y eistă, A şi y,. Avem lim y = <δ, deci eistă δ a. î. y <δ petru δ şi atuci f ( ) f ( y ) ( ) <ε, δ ; pri trecerea la limită, avem lim f f y = g g ε g este uiform cotiuă pe A. Teorema III.39. (Teorema lui Cator) Fie A mulţime compactă şi f: A fucţie cotiuă pe A atuci, f este uiform cotiuă pe A. Demostraţia se face pri reducere la absurd şi presupuem că f u este uiform cotiuă pe A (III.7) ε >, N,, y Aa.î. y < şi f f ( y) ε. Mulţimea A este compactă şi ( k ) k atuci A coţie u subşir coverget A la A. Avem: y + y y. Trecâd la k k k k k k f f y ε găsim f f ε (f este cotiuă pe limită î ( ) ( ) k k A), ε este absurd f este uiform cotiuă pe A.

34 Coseciţa III.. Fie I u iterval şi f: I fucţie cotiuă, atuci f este uiform cotiuă, dacă şi umai dacă eistă a, b I a. î. f este uiform cotiuă pe I (-, a] şi pe I [b, + ). Demostraţie: Fie a, b I cu a < b atuci f este uiform cotiuă pe [a, b] (mulţime compactă di ) şi după 4], 5] rezultă afirmaţia di coseciţă. Coseciţa III.. Fie a, b cu a < b şi f: (a, b) fucţie cotiuă atuci următoarele afirmaţii sut echivalete: ) f uiform cotiuă; ) f( a + ), f( b - ) ; 3) eistă g: [a, b] uiform cotiuă astfel îcât 3] ] g ( ab, ) = f. Demostraţie: ) ); ) 3); 3) ) şi faptul că f cotiuă pe (a, b) se poate prelugi pri cotiuitate la [a, b]. După 5] rezultă g cu g ( ab, ) = f este uiform cotiuă şi deci f este uiform cotiuă. 3] Eemple:. 5 f 3, = este fucţie cotiuă pe şi eistă ξ ître şi a. î. f(ξ) = deoarece f are proprietatea Darbou. Avem f() = - 3 < şi f() = 5 >, după cosecita (III.7 - ) eistă ξ (, ) a. î. f(ξ) =.. Să se rezolve ecuaţia: a =, a. Notăm 3 4 = y cu y (, ] şi avem: y 3y a =. Dacă a > a > 9 ) atuci 3 3 y, y cu y < şi y >. Petru 4 fucţie cotiuă pe este strict descrescătoare pe (-, 9 ( = a > petru 4 f ( y) = y 3y a 3 ) şi strict crescătoare pe ( 3, + ), deci f() < f(). Fucţia f cotiuă şi 3

35 descrescătoare pe [, ] se va aula î acest iterval, dacă şi umai dacă, f() > şi f() < (-a)(- - a)< a [-, ) (f() = petru a = -). Ecuaţia f(y) = admite petru a (-, ) soluţia y (, ] ude: y 3 9 4a a 3 = = 4 = 3 3 = log4 = 3± log a 3 9 4a petru a [-, ). 3. f:, f() = soluţii ale ecuaţiei date si să se studieze cotiuitatea uiformă pe. I. f este cotiuă şi mărgiită pe, dar f u este uiform cotiuă.avem: π ; = (4k+ ) π = = k+ k N. Fie: ; = kπ si ; (4 3), π π π = (4k+ 3) ; = (4k+ ) =, k N π π (4k+ 3) + (4k+ ) π π f( ) f( ) = si(4k+ ) si(4k+ 3) =, k N şi ε = a. î. <δ ε iar f( ) f( ) = =ε f u este uiform cotiuă pe. După teorema lui Cator (teorema III.39) f este uiform cotiuă pe orice iterval îchis şi mărgiit (compact) I. 4. Fie f: I cu f = +, să se precizeze dacă f este uiform + cotiuă pe: ) I = [, + ) respectiv pe ) I = (-, + ). 4

36 ) Petru cazul I = [, + ), f este cotiuă şi mărgiită pe I. Petru, I = [, + ) avem: f( ) f( ) = + = ε δ ε = =ε, ε> f este fucţie cotiuă pe I = [, + ) (după teorema III.6). ) Pe I = (-, + ) cosiderăm: +, cu + = = = + <δ ε cu δ( ε ) oricât de mic dorim, câd este suficiet de mare. Avem: f f = = > =ε f u este uiform cotiuă pe I (după III.7). 5

ETTI-AN1, , C. Ghiu Notițe de Adrian Manea Seminar 4 Serii Fourier și recapitulare 1 Serii Fourier Pentru dezvoltarea în serie Fourier (care

ETTI-AN1, , C. Ghiu Notițe de Adrian Manea Seminar 4 Serii Fourier și recapitulare 1 Serii Fourier Pentru dezvoltarea în serie Fourier (care Semiar 4 Serii Fourier și recapitulare Serii Fourier Petru dezvoltarea î serie Fourier (care se poate aplica atuci cîd seriile Taylor sît imposibile, trebuie satisfăcute codițiile Dirichlet: (D Fucția

Mai mult

Probleme rezolvate 1) Să se calculeze limitele următoarelor şiruri: 1 a) x n n = ( n+ 1)( n+ 2 )...( n+ n), n 2 n ( 1) 1 n n b) 2 3 n 5 n... ( 2

Probleme rezolvate 1) Să se calculeze limitele următoarelor şiruri: 1 a) x n n = ( n+ 1)( n+ 2 )...( n+ n), n 2 n ( 1) 1 n n b) 2 3 n 5 n... ( 2 Probleme rezolvate ) Să se calculeze itele următoarelor şiruri: a) x = ( + )( + )...( + ), 3 ( ) b) 3 5... ( x = e + e + + ) e Soluţie ( + )( + )...( + ) a) x = =... + + +. k l x = l +. Folosid coseciţa

Mai mult

Microsoft Word - subiecte

Microsoft Word - subiecte Uiversitate Spiru Haret Facultatea de Matematica-Iformatica Algebră 1 Discipliă obligatorie; Aul I, Sem 1, ore săptămâal, îvăţămât de zi: curs, semiar, total ore semestru 56; 6 credite; exame I CONŢINUTUL

Mai mult

Microsoft Word - 3 Transformata z.doc

Microsoft Word - 3 Transformata z.doc Capitolul 3 - Trasformata 05 06 CAPITOLUL 3 TRANSFORMATA BIDIMENSIONALĂ Defiim trasformata bidimesioală astfel: obţiem trasformata Fourier. (, e ω (3. şi (3. e ω Suprafaţa î plaul, defiită de şi va fi

Mai mult

Calcul Numeric

Calcul Numeric Calcul Numeric Cursul 7 2019 Aca Igat Memorarea matricelor rare - se memorează doar valorile eule şi suficiete iformaţii despre idici astfel ca să se poată recostitui complet matricea Pp. că matricea A

Mai mult

Microsoft Word - anmatcap1_3.doc

Microsoft Word - anmatcap1_3.doc . IRURI DE NUMERE Fie E omulimedeelemete,i o submulimedeidici,i. Defii ie:numim ir de umere reale o familie de umere reale cu idici umere aturale, pe care îl vom ota cu ( a ) ; a se ume te termeul geeral

Mai mult

Dependenţă funcţională n Cursul 9 Fie funcţiile f : A R R, i 1, m. A mulțime nevidă. i Definiţia 1. Spunem că funcţia g: A R depinde de funcţiile f1,

Dependenţă funcţională n Cursul 9 Fie funcţiile f : A R R, i 1, m. A mulțime nevidă. i Definiţia 1. Spunem că funcţia g: A R depinde de funcţiile f1, Depedeţă ucţioală Cursul 9 Fie ucţiile : A R R, i, A ulție evidă i Deiiţia Spue că ucţia g: A R depide de ucţiile, eistă o ucţie h de variabile astel îcât pe ulţiea A dacă g h,,,, A Dacă u eistă o ucție

Mai mult

Programare Delphi Laborator 2 a. Serii. Elaboraţi câte un program pentru sumarea primilor 100 de termeni ai seriilor următoare şi verificaţi numeric e

Programare Delphi Laborator 2 a. Serii. Elaboraţi câte un program pentru sumarea primilor 100 de termeni ai seriilor următoare şi verificaţi numeric e Programare Delphi Laborator 2 a. Serii. Elaboraţi câte u program petru sumarea primilor 00 de termei ai seriilor următoare şi verificaţi umeric egalităţile date: () (2) (3) 2 + 3 4 + 5 + = l 2; 6 2 + 2

Mai mult

SIMULARE EXAMEN DE BACALAUREAT LA MATEMATICA Toate subiectele (I, II, III) sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv

SIMULARE EXAMEN DE BACALAUREAT LA MATEMATICA Toate subiectele (I, II, III) sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv SIMULARE EXAMEN DE BACALAUREAT LA MATEMATICA 8.07.0 Toate subiectele (I, II, III) sut obligatorii. Se acordă 0 pucte di oficiu. Tipul efectiv de lucru este de ore. La toate subiectele se cer rezolvări

Mai mult

Microsoft Word - LogaritmiBac2009.doc

Microsoft Word - LogaritmiBac2009.doc Logaritmi. EcuaŃii logaritmice Logaritmi DefiiŃie. Fie a R * +, a şi b R * + douã umere reale. Se umeşte logaritm al umãrului real strict pozitiv b epoetul la care trebuie ridicat umãrul a, umit bazã,

Mai mult

Pagina 1 din 5 Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare Etapa județeană/a sectoarelor municipiului București a olimpia

Pagina 1 din 5 Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare Etapa județeană/a sectoarelor municipiului București a olimpia Pagia 1 di 5 Problema I: Patru pitici Parţial Puctaj. Răsturarea uui co 5 pucte 1. oform primului dese semificația lucrului miim W este dată de relația W mg y ude y L h L Lsi L(1 si. u ajutorul relației

Mai mult

Microsoft Word - LogaritmiBac2009.doc

Microsoft Word - LogaritmiBac2009.doc Logaritmi. EcuaŃii logaritmice Logaritmi DefiiŃie. Fie a R * +, a şi b R * + douã umere reale. Se umeşte logaritm al umãrului real strict pozitiv b epoetul la care trebuie ridicat umãrul a, umit bazã,

Mai mult

{ 3x + 3, x < 1 Exemple. 1) Fie f : R R, f(x) = 2x + 4, x 1. Funcţia f este derivabilă pe R\{1} (compunere de funcţii elementare), deci rămâne să stud

{ 3x + 3, x < 1 Exemple. 1) Fie f : R R, f(x) = 2x + 4, x 1. Funcţia f este derivabilă pe R\{1} (compunere de funcţii elementare), deci rămâne să stud { 3 + 3, < Eemple. ) Fie f : R R, f() + 4,. Funcţia f este derivabilă pe R\{} (compunere de funcţii elementare), deci rămâne să studiem derivabilitatea în a. Atunci f s() 3+3 6,< 3, f d f() f() (),> funcţia

Mai mult

Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică Gheorghe Asachi Iaşi, 2015 Analiză Matematică Lucian Maticiuc 1 / 29

Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică Gheorghe Asachi Iaşi, 2015 Analiză Matematică Lucian Maticiuc 1 / 29 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică Gheorghe Asachi Iaşi, 2015 Analiză Matematică Lucian Maticiuc 1 / 29 Definiţie. Şiruri mărginite. Şiruri monotone. Subşiruri ale

Mai mult

CAPITOLUL 1

CAPITOLUL 1 3. CARACTERISTICI STATISTICE ALE UNEI SERII DE DATE 3.. INTRODUCERE Statistica matematică, mai precis metodele furizate de aceasta s-au implemetat puteric î metodologia de lucru a diferite domeii. Apelul

Mai mult

Programa olimpiadei de matematică

Programa olimpiadei de matematică Programa olimpiadei de matematică petru clasele V VIII Petru fiecare clasă, î programa de olimpiadă sut icluse î mod implicit coţiuturile programelor de olimpiadă di clasele aterioare. Petru fiecare clasă,î

Mai mult

Microsoft Word - SUBIECTE FAZA LOCALA FEBRUARIE 2007

Microsoft Word - SUBIECTE  FAZA LOCALA FEBRUARIE 2007 CLASA a - V a 1 007 1. a) ArătaŃi că umărul A= 1+ + + +... + este divizibil cu 15. b) La u cocurs de matematică au participat elevi di clasele a V-a A, a V-a B şi a V-a C. 7 de elevi u sut di clasa a V-a

Mai mult

Calcul Numeric

Calcul Numeric Calcul Numeric Cursul 8 2019 Aca Igat Valori şi vectori proprii (eigevalues, eigevectors) Defiiţie Fie A. Numărul complex se umeşte valoare proprie a matricei A dacă există u vector u, u0 astfel ca: Au=u

Mai mult

Microsoft Word - pag_006.doc

Microsoft Word - pag_006.doc ARTICOLE METODICO-ŞTIINŢIFICE O APLICAŢIE A CERCULUI LUI EULER Prof Ileaa Stoica, Liceul Adrei Mureşau Braşov La cocursul iterjudeţea Laureţiu Duica de la Braşov, ediţia 3 a fost propusă la clasa a VII-a

Mai mult

Concursul Interjudeţean de Matematică Cristian S. Calude Galaţi, 26 noiembrie 2005 Inspectoratul Şcolar al Judeţului Galaţi, Societatea de Ştiinţe Mat

Concursul Interjudeţean de Matematică Cristian S. Calude Galaţi, 26 noiembrie 2005 Inspectoratul Şcolar al Judeţului Galaţi, Societatea de Ştiinţe Mat Cocursul Iterjudeţea de Matematică Cristia S. Calude Galaţi, 6 oiembrie 005 Ispectoratul Şcolar al Judeţului Galaţi, Societatea de Ştiiţe Matematice di Româia, Filiala Galaţi şi catedra de matematică a

Mai mult

Cursul 8 Funcţii analitice Vom studia acum comportarea şirurilor şi seriilor de funcţii olomorfe, cu scopul de a dezvălui o proprietate esenţială a ac

Cursul 8 Funcţii analitice Vom studia acum comportarea şirurilor şi seriilor de funcţii olomorfe, cu scopul de a dezvălui o proprietate esenţială a ac Cursul 8 Funcţii analitice Vom studia acum comportarea şirurilor şi seriilor de funcţii olomorfe, cu scopul de a dezvălui o proprietate esenţială a acestor funcţii: analiticitatea. Ştim deja că, spre deosebire

Mai mult

CURS 8

CURS 8 Trasformatorul perfect MATRCE POTV REAE M = = = s Φ Φ ( ( ) = ) = = l, = l (pe acelaşi miez), factor de cuplaj Petru cuplajul perfect ( = ) = l = = Traformatorul cu u cuplaj perfect: = sl Trasformatorul

Mai mult

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare Etapa Națională a Olimpiadei de FIZICĂ 3-7 Mai 2019, Târgoviște Barem de eval

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare Etapa Națională a Olimpiadei de FIZICĂ 3-7 Mai 2019, Târgoviște Barem de eval BAEM DE COECTAE Clasa a -a Pagia di 9 Subiect - MECANICĂ CLASICĂ Parţial Puctaj Bare subiect ucte Problea. Mişcări ucte a.) Mișcarea puctului aterial este uifor ariată a / cost. Eidet rectiliie u poate

Mai mult

STRUCTURA UNUI ARTICOL STIINTIFIC Un articol stiintific incepe cu titlul articolului, dupa care se scriu numele autorilor, in ordinea contributiei. Pe

STRUCTURA UNUI ARTICOL STIINTIFIC Un articol stiintific incepe cu titlul articolului, dupa care se scriu numele autorilor, in ordinea contributiei. Pe STRUCTURA UNUI ARTICOL STIINTIFIC U articol stiitific icepe cu titlul articolului, dupa care se scriu umele autorilor, i ordiea cotributiei. Petru fiecare autor trebuie metioata afilierea, adica istitutia

Mai mult

Microsoft Word - _Curs II_2_Mar17_2016out.doc

Microsoft Word - _Curs II_2_Mar17_2016out.doc CURS II Mar. 016 Prof. I. Lupea, Programare II, UTCluj 1. Operatorul SELECT -> aduare selectivă, umai elemete pozitive ditr-u şir. Tipuri de date şi culori asociate î diagramă.. For loop î For loop (imbricat).1.

Mai mult

Ce este decibelul si Caracteristica BODE

Ce este decibelul si Caracteristica BODE . Ce ete decibelul? Itoria utilizării acetei uităţi de măură ete legată de proprietăţile fiziologice ale itemului auditiv uma. Spre exemplu (figura ), dacă e aplică uui difuzor u emal cu o putere de W

Mai mult

Preţ bază

Preţ bază OPERATORUL PIEŢEI DE ENERGIE ELECTRICĂ ŞI DE GAZE NATURALE DIN ROMÂNIA INDICATORI SPECIFICI PUBLICAŢI DE OPCOM SA PREŢURI ŞI INDICI DE PREŢ/VOLUM Piaţa petru Ziua Următoare (PZU) Preţuri orare [lei/mwh]

Mai mult

Slide 1

Slide 1 ELECTROTEHNICĂ ET A I - IA CUR 6 Cof.dr.ig.ec. Claudia PĂCURAR e-mail: Claudia.Pacurar@ethm.utcluj.ro . Legea iducției electromagetice 2. Eergii și forțe î câmp magetic . Legea iducției electromagetice

Mai mult

D.Rusu, Teoria măsurii şi integrala Lebesgue 6 MĂSURA LEBESGUE Cursul 5 Teorema 6.26 Există submulţimi ale lui R care nu sunt măsurabile Lebesgue. Dem

D.Rusu, Teoria măsurii şi integrala Lebesgue 6 MĂSURA LEBESGUE Cursul 5 Teorema 6.26 Există submulţimi ale lui R care nu sunt măsurabile Lebesgue. Dem D.Rusu, Teoria măsurii şi integrala Lebesgue 6 MĂSURA LEBESGUE Cursul 5 Teorema 6.26 Există submulţimi ale lui R care nu sunt măsurabile Lebesgue. Demonstraţie. Fie mulţimea A = [0, ], pe care definim

Mai mult

Soluţiile problemelor propuse în nr. 1 / 2006 Clasele primare P.104. Suma dintre predecesorul unui număr şi succesorul numărului următor lui este 29.

Soluţiile problemelor propuse în nr. 1 / 2006 Clasele primare P.104. Suma dintre predecesorul unui număr şi succesorul numărului următor lui este 29. Soluţiile problemelor propuse î r. / 006 Clasele primare P.04. Suma ditre predecesorul uui umăr şi succesorul umărului următor lui este 9. Careesteacestumăr? (Clasa I ) Iria Luca, elevă, Iaşi Soluţie.

Mai mult

Microsoft Word - MD.05.

Microsoft Word - MD.05. pitolul uvite-cheie serii de puteri, puct regult, puct sigulr, ecuţie idicilă osideră o ecuţie difereţilă de ordi k ( k ) L(,,,,..., ) () Se pote căut soluţi sub for uei serii de puteri î jurul puctului

Mai mult

Aero-BCD, , Prof. L. Costache & M. Olteanu Notițe de Adrian Manea Seminar 5 Șiruri și serii de funcții. Serii de puteri 1 Șiruri de funcții D

Aero-BCD, , Prof. L. Costache & M. Olteanu Notițe de Adrian Manea Seminar 5 Șiruri și serii de funcții. Serii de puteri 1 Șiruri de funcții D Seminar 5 Șiruri și serii de funcții. Serii de puteri Șiruri de funcții Definiţie.: Fie (f n ) n un șir de funcții, cu fiecare f n : [a, b] R și fie o funcție f : [a, b] R. PC Spunem că șirul (f n ) converge

Mai mult

OLIMPIADA DE MATEMATICĂ ETAPA LOCALĂ CLASA A V-A SOLUŢII ŞI BAREME ORIENTATIVE DE CORECTARE Subiectul I a) Calculaţi: 13 :

OLIMPIADA DE MATEMATICĂ ETAPA LOCALĂ CLASA A V-A SOLUŢII ŞI BAREME ORIENTATIVE DE CORECTARE Subiectul I a) Calculaţi: 13 : OLIMPIADA DE MATEMATICĂ ETAPA LOCALĂ 1.0.01 CLASA A V-A SOLUŢII ŞI BAREME ORIENTATIVE DE CORECTARE Subiectul I 5 5 a) Calculaţi: 1 :1 17 4 14 4 8 :17 5 :100 5:. b) Arătaţi că umărul x 74a 4a7 a74 este

Mai mult

Universitatea Politehnica din Bucureşti Facultatea de Electronică, TelecomunicaŃii şi Tehnologia InformaŃiei Tehnici Avansate de Prelucrarea şi Analiz

Universitatea Politehnica din Bucureşti Facultatea de Electronică, TelecomunicaŃii şi Tehnologia InformaŃiei Tehnici Avansate de Prelucrarea şi Analiz Uiversitatea Politehica di ucureşti Facultatea de Electroică, TelecomuicaŃii şi Tehologia IformaŃiei Tehici Avasate de Prelucrarea şi Aaliza Imagiilor urs 7 Morfologie matematică Pla urs 7 Morfologie matematică

Mai mult

1. Se masoara forta de presiune X (Kg/cm 3 ), la care un anumit material cedeaza. Se presupune ca X urmeaza o lege normala. Pentru 10 masuratori se ob

1. Se masoara forta de presiune X (Kg/cm 3 ), la care un anumit material cedeaza. Se presupune ca X urmeaza o lege normala. Pentru 10 masuratori se ob 1. Se masoara forta de presiue X (Kg/cm 3 ), la care u aumit material cedeaza. Se presupue ca X urmeaza o lege ormala. Petru 10 masuratori se obti urmatoarele valori: Cerite: 19.6 19.9 20.4 19.8 20.5 21.0

Mai mult

Analiz¼a Matematic¼a - Curs 6 M¼ad¼alina Roxana Buneci

Analiz¼a Matematic¼a - Curs 6 M¼ad¼alina Roxana Buneci Analiz¼a Matematic¼a - Curs 6 M¼ad¼alina Roxana Buneci Cuprins 4 Spaţii topologice (continuare din cursul 5) 3 4.6 Spaţiul R n............................ 3 5 Calcul diferenţial 7 5. Derivatele funcţiilor

Mai mult

Cursul 7 Formula integrală a lui Cauchy Am demonstrat în cursul precedent că, dacă D C un domeniu simplu conex şi f : D C o funcţie olomorfă cu f cont

Cursul 7 Formula integrală a lui Cauchy Am demonstrat în cursul precedent că, dacă D C un domeniu simplu conex şi f : D C o funcţie olomorfă cu f cont Cursul 7 Formula integrală a lui Cauchy Am demonstrat în cursul precedent că, dacă D C un domeniu simplu conex şi f : D C o funcţie olomorfă cu f continuă pe D, atunci, pe orice curbă rectificabilă şi

Mai mult

Algebra: 1. Numere naturale. Operatii cu numere naturale. Ordinea operatiilor. Puteri si reguli de calcul cu puteri. Compararea puterilor. Multimea nu

Algebra: 1. Numere naturale. Operatii cu numere naturale. Ordinea operatiilor. Puteri si reguli de calcul cu puteri. Compararea puterilor. Multimea nu Algebr: 1. Numere turle. Opertii cu umere turle. Ordie opertiilor. Puteri si reguli de clcul cu puteri. Comprre puterilor. Multime umerelor turle este * N 0,1,2,3,...,,... si N N {0} 1,2,3,...,,.... Pe

Mai mult

UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB 6 aprilie 2019 Proba scrisă la MATEMATICĂ NOTĂ IM

UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB 6 aprilie 2019 Proba scrisă la MATEMATICĂ NOTĂ IM UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB 6 aprilie 219 Proba scrisă la MATEMATICĂ NOTĂ IMPORTANTĂ: 1) Problemele de tip grilă din Partea A pot

Mai mult

Microsoft Word - Analiza12BacRezolvate.doc

Microsoft Word - Analiza12BacRezolvate.doc ANALIZA MATEMATICA D : Fi I u itrvl şi f,f:i R FucŃi F s umşt primitivă lui f dcă: ) F st drivilă; ) F (f(, I Fi I u itrvl şi fucńi f:i R cr dmit primitiv Dcă F, F :I R sut primitiv l fucńii f, tuci F

Mai mult

GHEORGHE PROCOPIUC PROBLEME DE ANALIZĂ MATEMATICĂ ŞI ECUAŢII DIFERENŢIALE IAŞI, 2007

GHEORGHE PROCOPIUC PROBLEME DE ANALIZĂ MATEMATICĂ ŞI ECUAŢII DIFERENŢIALE IAŞI, 2007 GHEORGHE PROCOPIUC PROBLEME DE ANALIZĂ MATEMATICĂ ŞI ECUAŢII DIFERENŢIALE IAŞI, 7 Cuprins Elemente de teoria spaţiilor metrice 4 Spaţii metrice 4 Mulţimea numerelor reale 8 Şiruri şi serii 5 Şiruri de

Mai mult

Tiberiu Trif Analiză matematică 2 Calcul diferențial și integral în R n

Tiberiu Trif Analiză matematică 2 Calcul diferențial și integral în R n Tiberiu Trif Analiză matematică 2 Calcul diferențial și integral în R n Cuprins Notații v 1 Topologie în R n 1 1.1 Spațiul euclidian R n........................ 1 1.2 Structura topologică a spațiului

Mai mult

Realizarea fizică a dispozitivelor optoeletronice

Realizarea fizică a dispozitivelor optoeletronice Curs 03/04 Curs marti, 7-0, P4 C 3C 4*/3 9.33 9 0 C Capitolul B E t H D B J D t 0 t J Ecuatii costitutive D B J E H E I vid 0 4 0 7 H m 0 8,8540 F m c0,99790 0 0 0 8 m s X Simplificarea ecuatiilor lui

Mai mult

BAC 2007 Pro Didactica Programa M1 2 Rezolvarea variantei 61 versiune finală Redactia Pro Didactica Suportul pe net:

BAC 2007 Pro Didactica Programa M1 2 Rezolvarea variantei 61 versiune finală Redactia Pro Didactica Suportul pe net: BAC 7 Pro Didactica Programa M Rezolvarea variantei 6 versiune finală Redactia Pro Didactica Suportul pe net: http://www./ CAPITOLUL Varianta 6. Subiectul I. (a) Coordonatele punctelor C şi D satisfac

Mai mult

FIŞA NR

FIŞA NR Prof CORNELI MESTECN Prof RRODIC TRIŞCĂ CLUJ-NPOC 009 CUPRINS FIŞ NR NUMERE RELE Pg 6 FIŞ NR ECUŢII Pg 8 FIŞ NR FUNCŢII TEORIE Pg 0 4 FIŞ NR 4 FUNCŢII EXERCIŢII Pg FIŞ NR ECUŢII IRŢIONLE, ECUŢII EXPONENŢILE

Mai mult

Matematici aplicate științelor biologie Lab10 MV

Matematici aplicate științelor biologie  Lab10 MV LP10 - TATITICA INFERENŢIALĂ. Itervale de îcredere. Cosiderații teoretice Majoritatea studiilor statistice u se realizează pe îtreaga populaţie statistică di uul sau mai multe icoveiete: - talia populaţie

Mai mult

TEORIA MĂSURII Liviu C. Florescu Universitatea Al.I.Cuza, Facultatea de Matematică, Bd. Carol I, 11, R Iaşi, ROMANIA, e mail:

TEORIA MĂSURII Liviu C. Florescu Universitatea Al.I.Cuza, Facultatea de Matematică, Bd. Carol I, 11, R Iaşi, ROMANIA, e mail: TEORI MĂSURII Liviu C. Florescu Universitatea l.i.cuza, Facultatea de Matematică, Bd. Carol I, 11, R 700506 Iaşi, ROMNI, e mail: lflo@uaic.ro În mod intenţionat această pagină este lăsată albă! Cuprins

Mai mult

Clasa IX 1. O lăcustă face salturi, fiecare salt în linie dreaptă şi de două ori mai lung ca precedentul. Poate vreodată lăcusta să revină în punctul

Clasa IX 1. O lăcustă face salturi, fiecare salt în linie dreaptă şi de două ori mai lung ca precedentul. Poate vreodată lăcusta să revină în punctul Clasa IX. O lăcustă face salturi, fiecare salt în linie dreaptă şi de două ori mai lung ca precedentul. Poate vreodată lăcusta să revină în punctul de plecare iniţial? Soluţie. Răspunsul este negativ.

Mai mult

Facultatea de Matematică Anul II Master, Geometrie Algebrică Mulţimi algebrice ireductibile. Dimensiune 1 Mulţimi ireductibile Propoziţia 1.1. Fie X u

Facultatea de Matematică Anul II Master, Geometrie Algebrică Mulţimi algebrice ireductibile. Dimensiune 1 Mulţimi ireductibile Propoziţia 1.1. Fie X u Facultatea de Matematică Anul II Master, Geometrie Algebrică Mulţimi algebrice ireductibile. Dimensiune 1 Mulţimi ireductibile Propoziţia 1.1. Fie X un spaţiu topologic. Următoarele afirma-ţii sunt echivalente:

Mai mult

Capitolul MD. 10 Metoda funcţiilor Liapunov Fie sistemul diferenţial x = f (t, x), t t 0, x D R n. (10.1) Presupunem că x = 0 este punct de echilibru,

Capitolul MD. 10 Metoda funcţiilor Liapunov Fie sistemul diferenţial x = f (t, x), t t 0, x D R n. (10.1) Presupunem că x = 0 este punct de echilibru, Capitolul MD. 10 Metoda funcţiilor Liapunov Fie sistemul diferenţial x = f (t, x), t t 0, x D R n. (10.1) Presupunem că x = 0 este punct de echilibru, adică f (t, 0) = 0, t t 0. In acest paragraf, funcţia

Mai mult

Cursul 6 Cadru topologic pentru R n În continuarea precedentei părţi, din cursul 5, dedicată, în întregime, unor aspecte de ordin algebric (relative l

Cursul 6 Cadru topologic pentru R n În continuarea precedentei părţi, din cursul 5, dedicată, în întregime, unor aspecte de ordin algebric (relative l Cursul 6 Cadru topologic pentru R n În continuarea precedentei părţi, din cursul 5, dedicată, în întregime, unor aspecte de ordin algebric (relative la R n, în principal), sunt prezentate aici elemente

Mai mult

1

1 APROXIMAREA PROFILULUI TRANSVERSAL AL DRUMURILOR PRIN FUNCŢII MATEMATICE ÎN VEDEREA EVALUARII PARAMETRILOR DE CALITATE AI SUPRAFEŢEI CAROSABILE Prof dr ig Bruj Adri Şef lucr dr ig Dim Mri Asist ig Cătăli

Mai mult

Cursul 12 (plan de curs) Integrale prime 1 Sisteme diferenţiale autonome. Spaţiul fazelor. Fie Ω R n o mulţime deschisă şi f : Ω R n R n o funcţie de

Cursul 12 (plan de curs) Integrale prime 1 Sisteme diferenţiale autonome. Spaţiul fazelor. Fie Ω R n o mulţime deschisă şi f : Ω R n R n o funcţie de Cursul 12 (plan de curs) Integrale prime 1 Sisteme diferenţiale autonome. Spaţiul fazelor. Fie Ω R n o mulţime deschisă şi f : Ω R n R n o funcţie de clasă C 1. Vom considera sistemul diferenţial x = f(x),

Mai mult

Microsoft Word - cap1p4.doc

Microsoft Word - cap1p4.doc Algebră liniară, geometrie analitică şi diferenţială.6 Subspaţii vectoriale Fie V un spaţiu vectorial peste corpul K. În cele ce urmează vom introduce două definiţii echivalente pentru noţiunea de subspaţiu

Mai mult

E_c_matematica_M_mate-info_2019_var_06_LRO

E_c_matematica_M_mate-info_2019_var_06_LRO Matmatică M_mat-ifo Filira tortică, profilul ral, spcializara matmatică-iformatică Filira vocaţioală, profilul militar, spcializara matmatică-iformatică Toat subictl sut obligatorii. S acordă 0 puct di

Mai mult

CONCURSUL NAŢIONAL DE MATEMATICA PANAITOPOL EDIŢIA a X-a, TULCEA, 21 aprilie 2018 Clasa a VII - a 1. Se consideră numerele reale x, y şi z, cel puţin

CONCURSUL NAŢIONAL DE MATEMATICA PANAITOPOL EDIŢIA a X-a, TULCEA, 21 aprilie 2018 Clasa a VII - a 1. Se consideră numerele reale x, y şi z, cel puţin CONCURSUL NAŢIONAL DE MATEMATICA PANAITOPOL EDIŢIA a X-a, TULCEA, 21 aprilie 2018 Clasa a VII - a 1. Se consideră numerele reale x, y şi z, cel puţin două dintre ele fiind diferite. Arătaţi că x y z 0

Mai mult

Microsoft Word - Programa finala olimpiadei matematica 2007 gimnaziu.doc

Microsoft Word - Programa finala olimpiadei matematica 2007 gimnaziu.doc ROMÂNIA MINISTERUL EDUCAŢIEI ŞI CERCETĂRII DIRECŢIA GENERALĂ ÎNVĂŢĂMÂNT PREUNIVERSITAR SERVICIUL NAŢIONAL DE EVALUARE ŞI EXAMINARE PROGRAMA OLIMPIADEI DE MATEMATICĂ CLASELE V XII AN ŞCOLAR 006 / 007 Pentru

Mai mult

PROGRAMA CONCURSULUI NAŢIONAL

PROGRAMA CONCURSULUI NAŢIONAL ANUL ŞCOLAR 2011-2012 CLASA a IX-a În programa de concurs pentru clasa a IX-a sunt incluse conţinuturile programelor din clasele anterioare şi din etapele anterioare. 1. Mulţimi şi elemente de logică matematică.

Mai mult

HNT_vol_Vorbire_v_7_hhh.PDF

HNT_vol_Vorbire_v_7_hhh.PDF Utilizarea tehicilor uatate (fuzzy) si de diamica eliiara petru siteza adaptiva a vorbirii Horia-Nicolai L. Teodorescu cademia Româa, Sectia Stiita si Tehologia Iformatiei, Calea Victoriei 25, Bucuresti

Mai mult

MD.09. Teoria stabilităţii 1

MD.09. Teoria stabilităţii 1 MD.09. Teoria stabilităţii 1 Capitolul MD.09. Teoria stabilităţii Cuvinte cheie Soluţie stabilă spre +, instabilă si asimptotic stabilă, punct de echilibru, soluţie staţionară, stabilitatea soluţiei banale,

Mai mult

Prelegerea 4 În această prelegere vom învăţa despre: Algebre booleene; Funcţii booleene; Mintermi şi cuburi n - dimensionale. 4.1 Definirea algebrelor

Prelegerea 4 În această prelegere vom învăţa despre: Algebre booleene; Funcţii booleene; Mintermi şi cuburi n - dimensionale. 4.1 Definirea algebrelor Prelegerea 4 În această prelegere vom învăţa despre: Algebre booleene; Funcţii booleene; Mintermi şi cuburi n - dimensionale. 4.1 Definirea algebrelor booleene Definiţia 4.1 Se numeşte algebră Boole (booleană)

Mai mult

DAN LASCU ADRIANA-LIGIA SPORIŞ ANDA OLTEANU PAUL VASILIU MATEMATICĂ. CULEGERE DE PROBLEME TIP GRILĂ PENTRU ADMITEREA ÎN ACADEMIA NAVALĂ MIRCEA CEL BĂT

DAN LASCU ADRIANA-LIGIA SPORIŞ ANDA OLTEANU PAUL VASILIU MATEMATICĂ. CULEGERE DE PROBLEME TIP GRILĂ PENTRU ADMITEREA ÎN ACADEMIA NAVALĂ MIRCEA CEL BĂT DAN LASCU ADRIANA-LIGIA SPORIŞ ANDA OLTEANU PAUL VASILIU MATEMATICĂ. CULEGERE DE PROBLEME TIP GRILĂ PENTRU ADMITEREA ÎN ACADEMIA NAVALĂ MIRCEA CEL BĂTRÂN Colecţia Matematică DAN LASCU ADRIANA-LIGIA SPORIŞ

Mai mult

CLP_UTCN-grila-2012.dvi

CLP_UTCN-grila-2012.dvi Liceul: Numele: Punctaj: Prenumele: Concursul liceelor partenere cu Universitatea Tehnică din Cluj-Napoca Test grilă Ediţia a treia mai 0 Clasa a X-a În casuţa din stânga întrebării se va scrie litera

Mai mult

BAC 2007 Pro Didactica Programa M1 2 Rezolvarea variantei 36 versiune finală Redactia Pro Didactica Suportul pe net:

BAC 2007 Pro Didactica Programa M1 2 Rezolvarea variantei 36 versiune finală Redactia Pro Didactica Suportul pe net: BAC 27 Pro Didactica Programa M1 2 Rezolvarea variantei 36 versiune finală Redactia Pro Didactica Suportul pe net: http://www./ CAPITOLUL 1 Varianta 36 1. Subiectul I. (a) Avem 2 ( ) 2+ ( ) 2= 7i = 2 7

Mai mult

Probleme date la examenul de logică matematică şi computaţională. Partea a II-a Claudia MUREŞAN Universitatea din Bucureşti Facultatea de Matematică ş

Probleme date la examenul de logică matematică şi computaţională. Partea a II-a Claudia MUREŞAN Universitatea din Bucureşti Facultatea de Matematică ş Probleme date la examenul de logică matematică şi computaţională. Partea a II-a Claudia MUREŞAN Universitatea din Bucureşti Facultatea de Matematică şi Informatică Academiei 4, RO 0004, Bucureşti, România

Mai mult

OLM_2009_barem.pdf

OLM_2009_barem.pdf Ministerul Educaţiei, Cercetării şi Inovării Societatea de Ştiinţe Matematice din Romania Olimpiada Naţională de Matematică Etapa finală, Neptun Mangalia, 13 aprilie 2009 CLASA A VII-a, SOLUŢII ŞI BAREMURI

Mai mult

CONCURSUL NAŢIONAL DE MATEMATICA PANAITOPOL EDIŢIA a X-a, TULCEA, 21 aprilie 2018 Clasa a VII - a Soluţii orientative şi bareme Problema 1. Se conside

CONCURSUL NAŢIONAL DE MATEMATICA PANAITOPOL EDIŢIA a X-a, TULCEA, 21 aprilie 2018 Clasa a VII - a Soluţii orientative şi bareme Problema 1. Se conside CONCURSUL NAŢIONAL DE MATEMATICA PANAITOPOL EDIŢIA a X-a, TULCEA, 1 aprilie 18 Clasa a VII - a Soluţii orientative şi bareme Problema 1. Se consideră numerele reale x, y şi z, cel puţin două dintre ele

Mai mult

LOGICA MATEMATICA SI COMPUTATIONALA Sem. I,

LOGICA MATEMATICA SI COMPUTATIONALA  Sem. I, LOGICA MATEMATICĂ ŞI COMPUTAŢIONALĂ Sem. I, 2017-2018 Ioana Leustean FMI, UB Partea III Calculul propoziţional clasic Consistenţă şi satisfiabilitate Teorema de completitudine Algebra Lindenbaum-Tarski

Mai mult

Curs 10 Aplicaţii ale calculului diferenţial. Puncte de extrem 10.1 Diferenţiale de ordin superior S¼a trecem acum la de nirea diferenţialelor de ordi

Curs 10 Aplicaţii ale calculului diferenţial. Puncte de extrem 10.1 Diferenţiale de ordin superior S¼a trecem acum la de nirea diferenţialelor de ordi Curs 0 Aplicaţii ale calculului diferenţial. Puncte de extrem 0. Diferenţiale de ordin superior S¼a trecem acum la de nirea diferenţialelor de ordin superior. De niţia 0.. Fie n 2; D R k o mulţime deschis¼a

Mai mult

ETTI-AM2, , M. Joița & A. Niță Notițe de Adrian Manea Seminar 11 Transformarea Laplace Aplicații Transformarea Z Ecuații și sisteme diferenți

ETTI-AM2, , M. Joița & A. Niță Notițe de Adrian Manea Seminar 11 Transformarea Laplace Aplicații Transformarea Z Ecuații și sisteme diferenți Seminar Transformarea Laplace Aplicații Transformarea Z Ecuații și sisteme diferențiale Folosind transformata Laplace, putem reolva ecuații și sisteme diferențiale. Cu ajutorul proprietăților transformatei

Mai mult

Microsoft Word - D_ MT1_II_001.doc

Microsoft Word - D_ MT1_II_001.doc ,1 SUBIECTUL II (30p) Varianta 1001 a b 1 Se consideră matricea A = b a, cu a, b şi 0 http://wwwpro-matematicaro a) Să se arate că dacă matricea X M ( ) verifică relaţia AX = XA, atunci există uv,, astfel

Mai mult

Teoria Grafurilor şi Combinatorică recapitulare Principii de numărare Reţineţi că: P (n, r) este numărul de şiruri (sau r-permutări) de forma A 1,...,

Teoria Grafurilor şi Combinatorică recapitulare Principii de numărare Reţineţi că: P (n, r) este numărul de şiruri (sau r-permutări) de forma A 1,..., Teoria Grafurilor şi Combinatorică recapitulare Principii de numărare Reţineţi că: P (n, r) este numărul de şiruri (sau r-permutări) de forma A,..., A r unde A,..., A r sunt elemente distincte dintr-o

Mai mult

Cursul 13 Mulţimi Julia Fie f : C C o funcţie complexă şi fie f n = f f f iterata de ordin n a lui f. Peste tot în continuare vom presupune că f este

Cursul 13 Mulţimi Julia Fie f : C C o funcţie complexă şi fie f n = f f f iterata de ordin n a lui f. Peste tot în continuare vom presupune că f este Cursul 13 Mulţimi Julia Fie f : C C o funcţie complexă şi fie f n = f f f iterata de ordin n a lui f. Peste tot în continuare vom presupune că f este dezvoltabilă în serie de puteri în tot planul (cum

Mai mult

Microsoft Word - F.Paladi_TD_manual.doc

Microsoft Word - F.Paladi_TD_manual.doc dq d d c lm lmt lm 0, T 0 dt T 0 dt T 0 d lt deoarece lm(lt ) La fel se poate demostra că ş T 0 cp cv lm 0, care tde către zero ma let decât dfereţa de la T 0 cp umărător c c P V 15 Etropa Exstă tre formulăr

Mai mult

ETTI-AM2, , M. Joița & A. Niță Notițe de Adrian Manea Seminar 10 Transformata Fourier Integrala Fourier Seriile Fourier sînt utile pentru dez

ETTI-AM2, , M. Joița & A. Niță Notițe de Adrian Manea Seminar 10 Transformata Fourier Integrala Fourier Seriile Fourier sînt utile pentru dez Seminar 1 Transformata Fourier Integrala Fourier Seriile Fourier sînt utile pentru dezvoltarea unor funcții periodice (sau convertibile în unele periodice). Însă dacă funcțiile sînt arbitrare, se folosește

Mai mult

ALGORITMICĂ. Seminar 3: Analiza eficienţei algoritmilor - estimarea timpului de execuţie şi notaţii asimptotice. Problema 1 (L) Să se determine număru

ALGORITMICĂ. Seminar 3: Analiza eficienţei algoritmilor - estimarea timpului de execuţie şi notaţii asimptotice. Problema 1 (L) Să se determine număru ALGORITMICĂ. Seminar 3: Analiza eficienţei algoritmilor - estimarea timpului de execuţie şi notaţii asimptotice. Problema 1 (L) Să se determine numărul de operaţii efectuate de către un algoritm care determină

Mai mult

Teoreme cu nume 1. Problema (Năstăsescu IX, p 147, propoziţia 5) Formula lui Chasles Pentru orice puncte M, N şi P avem MN + NP = MP.

Teoreme cu nume 1. Problema (Năstăsescu IX, p 147, propoziţia 5) Formula lui Chasles Pentru orice puncte M, N şi P avem MN + NP = MP. Teoreme cu nume Problema (Năstăsescu IX, p 47, propoziţia 5) Formula lui hasles Pentru orice puncte M, N şi P avem MN + NP = MP 2 Problema (Năstăsescu IX, p 68, teoremă) Vectorul de poziţie al centrului

Mai mult

Examenul de bacalaureat 2012

Examenul de bacalaureat 2012 PROGRAMA PENTRU SIMULAREA EXAMENULUI DE BACALAUREAT 2019 LA DISCIPLINA MATEMATICĂ În cadrul examenului de Bacalaureat 2019, Programele de examen la disciplina Matematica se diferenţiază în funcţie de filiera,

Mai mult

Coordonate baricentrice Considerăm în plan un triunghi ABC şi un punct Q în interiorul său, fixat arbitrar. Notăm σ c = aria ( QAB) σ a = aria ( QBC),

Coordonate baricentrice Considerăm în plan un triunghi ABC şi un punct Q în interiorul său, fixat arbitrar. Notăm σ c = aria ( QAB) σ a = aria ( QBC), Coordonate baricentrice Considerăm în plan un triunghi ABC şi un punct Q în interiorul său, fixat arbitrar Notăm σ c = aria ( QAB) = aria ( QBC), = aria ( QCA) şi σ = aria ( ABC), astfel încât σ = + +

Mai mult

Examenul de bacalaureat 2012

Examenul de bacalaureat 2012 INSPECTORATUL Ș C O L A R J U D E Ț E A N C O V A S N A PROGRAMA PENTRU SIMULAREA EXAMENULUI DE BACALAUREAT 2015 LA DISCIPLINA MATEMATICĂ În cadrul examenului de Bacalaureat 2015, Programele de examen

Mai mult

Curs 3 Permutari cu repetitie. Combinari. Algoritmi de ordonare si generare

Curs 3  Permutari cu repetitie. Combinari.  Algoritmi de ordonare si generare Curs 3 Permutări cu repetiţie. Combinări. Algoritmi de ordonare şi generare Octombrie 2015 Cuprins Algoritmi de ordonare şi generare pentru permutări cu repetiţie Reprezentarea binară a submulţimilor Algoritmi

Mai mult

Cursul 12 Şiruri recurente în planul complex Vom studia, în continuare, comportarea în raport cu data iniţială a şirurilor definite prin relaţii de re

Cursul 12 Şiruri recurente în planul complex Vom studia, în continuare, comportarea în raport cu data iniţială a şirurilor definite prin relaţii de re Cursul 12 Şiruri recurente în planul complex Vom studia, în continuare, comportarea în raport cu data iniţială a şirurilor definite prin relaţii de recurenţă de forma z n+1 = f(z n ), n = 0, 1, 2,...,

Mai mult

I

I METODA VECTORIALĂ ÎN GEOMETRIE prof. Andrei - Octavian Dobre Această metodă poate fi descrisă după cum urmează: Fiind dată o problemă de geometrie, după explicitarea şi reprezentarea grafică a configuraţiei

Mai mult

Distanţa euclidiană (indusă de norma euclidiană) (în R k ). Introducem în continuare o altă aplicaţie, de această dată pe produsul cartezian R k XR k,

Distanţa euclidiană (indusă de norma euclidiană) (în R k ). Introducem în continuare o altă aplicaţie, de această dată pe produsul cartezian R k XR k, Distanţa euclidiană (indusă de norma euclidiană) (în R k ). Introducem în continuare o altă aplicaţie, de această dată pe produsul cartezian R k XR k, aplicaţie despre care vom vedea că reprezintă generalizarea

Mai mult

Curs 8 Variabile aleatoare continue 8.1 Funcţia caracteristică Definiţia Fie X o v. a. cu densitatea de probabilitate f. Funcţia ϕ X (t) = M [ e

Curs 8 Variabile aleatoare continue 8.1 Funcţia caracteristică Definiţia Fie X o v. a. cu densitatea de probabilitate f. Funcţia ϕ X (t) = M [ e Curs 8 Variabile aleaoare coiue 8 Fucţia caracerisică Defiiţia 8 Fie X o v a cu desiaea de probabiliae f Fucţia ϕ X ) = M [ e ix] = e ix fx)dx, se umeşe fucţia caracerisică corespuzăoare v a X Teorema

Mai mult

20 SUBIECTE DE EXAMEN - De fapt, în pofida acestor probleme, până la urmă tot vom logaritma, căci aceasta este tehnica naturală în context. Trebuie do

20 SUBIECTE DE EXAMEN - De fapt, în pofida acestor probleme, până la urmă tot vom logaritma, căci aceasta este tehnica naturală în context. Trebuie do SUBIECTE DE EXAMEN - De fapt, în pofida acestor probleme, până la urmă tot vom logaritma, căci aceasta este tehnica naturală în context. Trebuie doar să gestionăm cu precauţie detaliile, aici fiind punctul

Mai mult

Notiuni de algebra booleana

Notiuni de algebra booleana Noţiuni de algebră booleană (în lucru) Definiţie Algebră booleană = o structură algebrică formată din: O mulţime B Două operaţii binare notate cu (+) şi (.) O operaţie unară notată cu ( ) pentru care sunt

Mai mult

L4. TEOREMELE ALGEBREI BINARE. FUNCȚII LOGICE ELEMENTARE. OPERAȚII LOGICE PE BIT. SINTEZA FUNCȚIILOR LOGICE DIN TABELE DE ADEVĂR 1. Obiective Prin par

L4. TEOREMELE ALGEBREI BINARE. FUNCȚII LOGICE ELEMENTARE. OPERAȚII LOGICE PE BIT. SINTEZA FUNCȚIILOR LOGICE DIN TABELE DE ADEVĂR 1. Obiective Prin par L4. TEOREMELE LGEBREI BINRE. FUNCȚII LOGICE ELEMENTRE. OPERȚII LOGICE PE BIT. SINTEZ FUNCȚIILOR LOGICE DIN TBELE DE DEVĂR 1. Obiective Prin parcurgerea acestei ședințe de laborator studenții vor fi capabili:

Mai mult

CONCURSUL DE MATEMATICĂ APLICATĂ "ADOLF HAIMOVICI" ETAPA JUDEȚEANĂ 18 martie 2017 Filiera Tehnologică : profilul Tehnic Clasa a IX -a Problema 1. 2 Se

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI ETAPA JUDEȚEANĂ 18 martie 2017 Filiera Tehnologică : profilul Tehnic Clasa a IX -a Problema 1. 2 Se Clasa a IX -a Se consideră funcţia f : R R, f ( x) x mx 07, unde mr a) Determinaţi valoarea lui m ştiind că f( ), f() şi f () sunt termeni consecutivi ai unei progresii aritmetice b) Dacă f() f(4), să

Mai mult

Examenul de bacalaureat 2012

Examenul de bacalaureat 2012 CENTRUL NAŢIONAL DE EVALUARE ŞI EXAMINARE PROGRAMA DE EXAMEN PENTRU DISCIPLINA MATEMATICĂ BACALAUREAT 2015 PROGRAMA M_tehnologic Filiera tehnologică, profilul servicii, toate calificările profesionale,

Mai mult

Gheorghe IUREA Adrian ZANOSCHI algebră geometrie clasa a VII-a ediţia a V-a, revizuită mate 2000 standard EDITURA PARALELA 45 Matematică. Clasa a VII-

Gheorghe IUREA Adrian ZANOSCHI algebră geometrie clasa a VII-a ediţia a V-a, revizuită mate 2000 standard EDITURA PARALELA 45 Matematică. Clasa a VII- Gheorghe IUREA Adrian ZANOSCHI algebră geometrie clasa a VII-a ediţia a V-a, revizuită mate 2000 standard 3 Algebră Capitolul I. MULŢIMEA NUMERELOR RAŢIONALE Identificarea caracteristicilor numerelor raţionale

Mai mult

Universitatea Politehnica din Bucureşti 2019 Disciplina: Geometrie şi Trigonometrie G1 * Varianta A 1. Ştiind cos x = 3 2, atunci sin2 x

Universitatea Politehnica din Bucureşti 2019 Disciplina: Geometrie şi Trigonometrie G1 * Varianta A 1. Ştiind cos x = 3 2, atunci sin2 x 1 5 6 7 Universitatea Politehnica din Bucureşti 019 Disciplina: Geometrie şi Trigonometrie G1 * Varianta A 1 Ştiind cos x atunci sin x este: (6 pct a 1 ; b 1 ; c 1 ; d ; e 1 8 ; f Soluţie Folosind prima

Mai mult

Elemente de aritmetica

Elemente de aritmetica Elemente de aritmetică Anul II Februarie 2017 Divizibilitate în Z Definiţie Fie a, b Z. Spunem că a divide b (scriem a b) dacă există c Z astfel încât b = ac. In acest caz spunem că a este un divizor al

Mai mult

Microsoft Word - fmnl06.doc

Microsoft Word - fmnl06.doc Metode Numerce Lucrre de lbortor r. 6 I. Scopul lucrăr Metode tertve de rezolvre sstemelor lre. II. Coţutul lucrăr. Metode tertve de rezolvre sstemelor lre. Geerltăţ. 2. Metod Jcob. 3. Metod Guss-Sedel.

Mai mult

O metodă de rafinare a unor inegalităţi geometrice Temistocle BÎRSAN 1, Marius DRĂGAN 2, Neculai STANCIU 3 Abstract. This paper presents a method to o

O metodă de rafinare a unor inegalităţi geometrice Temistocle BÎRSAN 1, Marius DRĂGAN 2, Neculai STANCIU 3 Abstract. This paper presents a method to o O metodă de rafinare a unor inegalităţi geometrice Temistocle BÎSAN 1, Marius DĂGAN, Neculai STANCIU 3 Abstract. This paper presents a method to obtain some refined geometric inequalities in a triangle,

Mai mult

Logică și structuri discrete Logică propozițională Marius Minea marius/curs/lsd/ 3 noiembrie 2014

Logică și structuri discrete Logică propozițională Marius Minea   marius/curs/lsd/ 3 noiembrie 2014 Logică și structuri discrete Logică propozițională Marius Minea marius@cs.upt.ro http://www.cs.upt.ro/ marius/curs/lsd/ 3 noiembrie 2014 Unde aplicăm verificarea realizabilității? probleme de căutare și

Mai mult

Pachete de lecţii disponibile pentru platforma AeL

Pachete de lecţii disponibile pentru platforma AeL Pachete de lecţii disponibile pentru platforma AeL -disciplina Matematică- Nr. crt Nume pachet clasa Nr. momente Nr.Recomandat de ore 1 Corpuri geometrice V 6 1 2 Fracţii V 14 5 3 Măsurarea lungimilor.

Mai mult

Prelegerea 3 În această prelegere vom învăţa despre: Clase speciale de latici: complementate. modulare, metrice, distributive şi 3.1 Semi-distributivi

Prelegerea 3 În această prelegere vom învăţa despre: Clase speciale de latici: complementate. modulare, metrice, distributive şi 3.1 Semi-distributivi Prelegerea 3 În această prelegere vom învăţa despre: Clase speciale de latici: complementate. modulare, metrice, distributive şi 3.1 Semi-distributivitate şi semi - modularitate Fie L o latice. Se numeşte

Mai mult