Matematica - Clasa teste pentru grupele de excelenta
|
|
- Georgian Mazilescu
- 3 ani în urmă
- Vzualizari:
Transcriere
1 2. Dacă abc cd = 262, calculaţi ab (c + d). 3. Calculaţi suma numerelor abc, dacă a < b şi c = a + b Calculaţi suma dintre cea mai mică sumă S = a + b + c + d şi cea mai mare sumă S, dacă a 1 = b + 2 = c 3 = d + 4. Testul Nr Se consideră toate numerele naturale de 2 cifre care împărţite la un număr de o cifră dau restul 7. Determinaţi numărul acestor numere şi suma dintre cel mai mare şi cel mai mic dintre ele. 2. La o împărţire de două numere naturale, restul este jumătate din cât, iar câtul este o treime din împărţitor. Determinaţi numărul împărţirilor ce se pot efectua în condiţiile date, ştiind că deîmpărţitul este număr de trei cifre. 3. Suma a trei numere naturale este 81. Dacă mărim numerele cu 12, 15, 9, se obţin trei numere consecutive. Determinaţi numerele. 4. În fiecare pătrat se scrie diferenţa numerelor din pătratele aflate dedesubt. Determinaţi a. a
2 Testul Nr Suma a trei numere este 58. Mărind numerele cu 10, 2, respectiv 14, se obţin 3 numere naturale pare consecutive. Aflaţi numerele. 2. Făcând o prezenţă preliminară înainte de plecarea într-o excursie, se constată că veniseră şapte optimi din cei înscrişi. Mai vin încă 5 elevi, iar numărul prezenţilor este de 15 ori mai mare decât al absenţilor. Câţi elevi trebuie să mai vină? 3. Care este numărul drumurilor de lungime minimă pentru a ajunge din A în B, evitând parcurgerea laturilor pătratului colorat (mergând pe liniile caroiajului)? T U V X Y B P Q R N S O M L K J I H A C D E F G 4. Care este numărul minim de ani consecutivi în care împreună se va obţine un număr întreg de săptămâni? Testul Nr Două mobile se află pe o pistă circulară în acelaşi punct. Ele fac câte un tur complet în 6 minute, respectiv 4 minute. Dacă mobilele pleacă simultan, după cât timp vor fi din nou în punctul de plecare? 23
3 2. Care este numărul minim de piese de forma alăturată ce trebuie folosite (fără suprapunere) pentru a obţine un pătrat? 3. Suma a două numere de două cifre este tot număr de două cifre. Dacă un număr se măreşte cu 12, acesta este de patru ori mai mare decât diferenţa dintre celălalt număr şi 9. Aflaţi cea mai mică şi cea mai mare valoare a sumei celor două numere. 4. Într-un şir indian sunt aşezaţi copii. În faţa lui Nicu se află un sfert din copii, în spatele lui George se află o treime din copii, iar între Nicu şi George sunt 8 copii. Câţi copii sunt în total? Testul Nr Care este numărul minim de beţe cu lungimea de 6 cm cu ajutorul cărora putem forma 9 pătrate? 2. Determinaţi S = a + b + c dacă: 2a + 3b + c = 17 şi 3a + 4b + c = Suma a 5 numere naturale nenule distincte este 31. Determinaţi numerele. 4. O persoană trăieşte de 57 ani, 57 luni, 57 săptămâni, 59 zile. Câţi ani a împlinit persoana? 24
4 Testul Nr. 35 a 1. Conform modelului b c b + c = 2 a, completaţi figura alăturată Un muncitor lucrează într-o zi cât 2 ucenici. Un număr de 10 muncitori şi 16 ucenici termină o lucrare în 12 zile. În câte zile termină lucrarea 15 muncitori şi 18 ucenici? vase identice pline cu apă au masa de 162 kg. Dacă 5 vase sunt pline, 7 vase sunt pline pe jumătate, iar 6 vase sunt umplute trei sferturi, atunci masa lor este de 122 kg. Aflaţi masa unui vas şi masa apei dintr-un vas plin. 4. Determinaţi suma numerelor a, b, c, dacă ab = c şi abc = bc. Testul Nr Produsul a trei numere naturale este 48. Mărind separat câte unul din numere cu 1, produsul devine 72, 60, 56. Determinaţi suma celor trei numere. 2. Determinaţi toate numerele naturale n care se împart exact la toate numerele naturale nenule cel mult egale cu n Un elev primeşte la fiecare 20 de zile suma de 100 lei. El cheltuie 50 lei la fiecare 15 zile. Ce sumă economiseşte elevul în 360 de zile? 4. În cercurile din figura alăturat se aşază toate numerele de la 1 la 7 inclusiv, fiecare o singură dată, astfel sumele celor trei 25
5 Testul Nr Dacă împărţitorul este 9, avem numerele 9n + 7, 1 n 10. Dacă împărţitorul este 8, avem numerele 8m + 7, 1 m 11. În total avem 21 de numere şi suma cerută = Fie a = b c + r. Avem a = 6r 2r + r. Din a 100 avem r 3. Din a 999 avem r 9. Obţinem 7 împărţiri. 3. Fie numerele a, b, c. Cazul I): a + 13 = b + 15; a + 14 = c + 9 a = 26, b = 24, c = 31. Cazul II): c + 10 = b + 15; c + 11 = a a = 28, b = 24, c = = 2; 1 0 = 1; 6 1 = 5; 2 1 = 1; 5 1 = 4; a = 4 1 = Testul Nr Fie a + b + c = 58. Cazul I): a + 10 = 2n 2; b + 2 = 2n, c + 14 = 2n + 2 n = 14, a = 16, b = 26, c = 16. Cazul II): a + 10 = 2n + 2; b + 2 = 2n, c + 14 = 2n + 2 n = 14, a = 20, b = 26, c = Fie 8n numărul elevilor înscrişi. Avem 7n + 5 = 15(n 5). Obţinem n = 10; 8n = 80. Trebuie să vină = Numărul minim este 14: AGB; AFIHB; AFQRBB; AFXB; AEJHB; AEJIQRB; AEJIXB; ACNPUB; ACTB; ALKNPUB; ACKTB; AMPUB; AMNTB; ASB. Considerând că avem 15 pătrate de latură a, lungimea drumului minim este 8a. 4. Avem 365 = ; 366 = Numărul minim de ani consecutivi este 5, din care primul şi ultimul an sunt ani bisecţi. Numărul total de săptămâni în cei 5 ani este =
6 Testul Nr Un mobil efectuează 2 tururi complete, iar celălalt 3 tururi complete, indiferent de sensul de parcurs. Timpul în ambele cazuri este 6 2 = 3 4 minute. 2. Notăm cu a lungimea unui pătrat mic din figura dată. Din două figuri se obţine un dreptunghi cu dimensiunile 5a şi 2a. Pătratul are dimensiunea minimă 10a. Vom folosi două rânduri de câte 5 dreptunghiuri. În total sunt = 20 de piese. 3. Notăm numerele cu a şi b, S = a + b. Din 4(a 9) = b + 12 rezultă 4(a 12) = b. Fie b = 4n, a = n + 12, S = 5n n n max = 24, S max = 132 = , n min = 3, a = 15, b = 12, S min = Dacă Nicu este în faţa lui George, iar 12n este numărul total al copiilor, avem 4n + 3n = 12n. Obţinem n = 2, 12n = 24. Dacă primul este George, avem 4n = 9 + 3n şi deci 12n = 108. Testul Nr Luăm 8 beţe AB, CD, EF, GH, AG, MN, PQ, BH ca în figura de mai jos. A M P B C E D F G N Q H 2. Prin scăderea egalităţilor rezultă a + b = 7. Avem 17 = 2(a + b) + + b + c şi b + c = 3. Obţinem soluţiile (7, 0, 3), (6, 1, 2), (5, 2, 1), (4, 3, 0) şi S 7, 8, 9, Notăm numerele cu a < b < c < d < 3a. Dacă b 6, avem c 7, d 8, 3a 9 şi atunci a + b + c + d + 3a > 31. Dacă b 3, atunci a 2 şi 3a 6 şi atunci a + b + c + d + 3a = 20. Dacă b 3, atunci a 2 şi a + b + c + d + 3a < 20. Rămâne b = 4. Nu putem avea a 2. Rămâne a = 3 şi atunci c = 7, d = 8. 99
Inspectoratul Şcolar Judeţean Suceava Şcoala Gimnazială Luca Arbure CONCURSUL DE MATEMATICǍ ISTEŢII D ARBORE EDIŢIA a VIII a 29 APRILIE 2017 Clasa a I
Clasa a IV a 1. Rezultatul calculului : 8 + [40 + 8 (00 : 5 7 : )] 0 este A) 0 B) C) 4 D) 8. Valoarea lui x din egalitatea [( x + 60 : ) + 4] 5 = 1985este : A) 1 B) 5 C) 1 D) 10. Suma dintre jumatatea
Performanta in matematica de gimnaziu si liceu-program de pregatire al elevilor olimpici MULTIMI. OPERATII CU MULTIMI Partea I+II Cls. a V-a
Performanta in matematica de gimnaziu si liceu-program de pregatire al elevilor olimpici MULTIMI. OPERATII CU MULTIMI Partea I+II Cls. a V-a 6.02.2016 si 13.02.2016 Material intocmit de prof. BAJAN MARIANA
Subiecte_funar_2006.doc
Clasa a VIII-a A. 1. Exista numere n Z astfel încât n si n+ sa fie patrate perfecte? (Gheorghe Stoica) A. 2. Se considera A N o multime cu 7 elemente si k N*. Aratati ca ecuatia 4x 2 4ax+b 2 +10k = 0,
OLM_2009_barem.pdf
Ministerul Educaţiei, Cercetării şi Inovării Societatea de Ştiinţe Matematice din Romania Olimpiada Naţională de Matematică Etapa finală, Neptun Mangalia, 13 aprilie 2009 CLASA A VII-a, SOLUŢII ŞI BAREMURI
Microsoft Word - Rezolvarea Test nr. 11.doc
Testul nr. 11 Problema 1 (30 puncte = 10 puncte + 10 puncte + 10 puncte) a) Să se calculeze ( 42 : 2 + 23 ) :11+ 2 5 16. b) Să se determine cifrele a și b din egalitatea { a b} 2 + 42 : 2 + 23 :11+ 2 5
joined_document_27.pdf
INSPECTORATUL ȘCOLAR JUDEȚEAN GORJ OLIMPIADA NAȚIONALĂ DE MATEMATICĂ ETAPA LOCALĂ, CLASA a V - a FEBRUARIE 014 a). Pe un stadion intră la un meci un număr de persoane după următoarea regulă: în primul
Microsoft Word - Concursul SFERA.doc
CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ SFERA EDIŢIA a II-a BĂILEŞTI, 1 martie 005 CLASA a IV-a Pentru întrebările 1-5 scrieţi pe lucrare litera corespunzătoare răspunsului corect 1. Care este numărul care
TEST DE PROMOVARE ÎN CLASELE DE EXCELENȚĂ Clasa a V-a BAREM SUBIECTUL I a) Determinați numărul natural a din egalitatea: 315 :
TEST DE PROMOVARE ÎN CLASELE DE EXCELENȚĂ Clasa a V-a 29.09.2018 BAREM SUBIECTUL I a) Determinați numărul natural a din egalitatea: 315 : 7 9 4 22 5 204 : 2 2 a 16 : 4 43 b) Se consideră șirul următor
MergedFile
PROIECT DIDACTIC Clasa a VII-a Matematică Proiect didactic realizat de profesor Tatiana Predoană, Fundația Noi Orizonturi, în cadrul programului - pilot Digitaliada, revizuit de Monica Popovici, profesor
Universitatea Politehnica din Bucureşti 2019 Disciplina: Geometrie şi Trigonometrie G1 * Varianta A 1. Ştiind cos x = 3 2, atunci sin2 x
1 5 6 7 Universitatea Politehnica din Bucureşti 019 Disciplina: Geometrie şi Trigonometrie G1 * Varianta A 1 Ştiind cos x atunci sin x este: (6 pct a 1 ; b 1 ; c 1 ; d ; e 1 8 ; f Soluţie Folosind prima
recmat dvi
Concursul de matematică Florica T.Câmpan Etapa judeţeană, 5-6 mai 2005 Notă. Toate subiectele sunt obligatorii. Timp de lucru: cl. a IV-a 90 de minute, cl. V-VIII 2 ore. ClasaaIV-a 1. Să seafledouă numere
Clasa IX 1. O lăcustă face salturi, fiecare salt în linie dreaptă şi de două ori mai lung ca precedentul. Poate vreodată lăcusta să revină în punctul
Clasa IX. O lăcustă face salturi, fiecare salt în linie dreaptă şi de două ori mai lung ca precedentul. Poate vreodată lăcusta să revină în punctul de plecare iniţial? Soluţie. Răspunsul este negativ.
CONCURSUL DE MATEMATICǍ ISTEŢII D ARBORE EDIŢIA a X-a - 20 aprilie 2019 Clasa a IV-a BAREM DE CORECTARE ŞI NOTARE SUBIECTUL I Se punctează doar rezult
CONCURSUL DE MATEMATICǍ ISTEŢII D ARBORE EDIŢIA a X-a - 0 aprilie 09 Clasa a IV-a BAREM DE CORECTARE ŞI NOTARE Se punctează doar rezultatul: pentru fiecare răspuns se acordă fie uncte, fie 0 puncte Nu
I
METODA VECTORIALĂ ÎN GEOMETRIE prof. Andrei - Octavian Dobre Această metodă poate fi descrisă după cum urmează: Fiind dată o problemă de geometrie, după explicitarea şi reprezentarea grafică a configuraţiei
Republica Serbia MINISTERUL ÎNVĂŢĂMÂNTULUI, ŞTIINŢEI ŞI DEZVOLTĂRII TEHNOLOGICE INSTITUTUL PENTRU EVALUAREA CALITĂŢII ÎNVĂŢĂMÂNTULUI ŞI EDUCAŢIEI INST
Republica Serbia MINISTERUL ÎNVĂŢĂMÂNTULUI, ŞTIINŢEI ŞI DEZVOLTĂRII TEHNOLOGICE INSTITUTUL PENTRU EVALUAREA CALITĂŢII ÎNVĂŢĂMÂNTULUI ŞI EDUCAŢIEI INSTITUTUL PEDAGOGIC AL VOIVODINEI EXAMENUL FINAL ÎN ÎNVĂŢĂMÂNTUL
Microsoft Word - V_4_Inmultirea_nr_nat.doc
3 Înmulţirea numerelor naturale De acum, pentru înmulţire vom folosi semnul în loc de Ex În loc de 32 9 vom scrie 32 9 Dacă a şi b sunt două numere naturale, prin produsul lor vom înţelege a b Ex a) Produsul
MergedFile
PROIECT DIDACTIC Clasa a VII-a Matematică Proiect didactic realizat în cadrul programului - pilot Digitaliada, revizuit de Simona Roșu, profesor Digitaliada Textul și ilustrațiile din acest document începând
ARTUR BĂLĂUCĂ ARITMETICĂ Teme pentru centre de excelență MODELE DE PROBLEME REZOLVATE DE PROBLEME SEMNIFICATIVE PENTRU OLIMPIADE, CONCURS
ARTUR BĂLĂUCĂ ARITMETICĂ Teme pentru centre de excelență + 0 MODELE DE PROBLEME REZOLVATE + 1130 DE PROBLEME SEMNIFICATIVE PENTRU OLIMPIADE, CONCURSURI ŞI CENTRE DE EXCELENŢĂ Clasa a V-a Ediţia a X-a EDITURA
clasa I Se recomandă citirea enunţurilor de către învăţător. 1. Continuă numărarea şi află câţi morcovi a mâncat iepuraşul. 6, 7, 8, 9,. A) 3 B) 10 C)
clasa I Se recomandă citirea enunţurilor de către învăţător.. Continuă numărarea şi află câţi morcovi a mâncat iepuraşul. 6, 7, 8, 9,. A) B) 0 C) D) 9 E). Vecinul mai mic al numărului 70 este: A) 60 B)
Microsoft Word - D_ MT1_II_001.doc
,1 SUBIECTUL II (30p) Varianta 1001 a b 1 Se consideră matricea A = b a, cu a, b şi 0 http://wwwpro-matematicaro a) Să se arate că dacă matricea X M ( ) verifică relaţia AX = XA, atunci există uv,, astfel
RecMat dvi
Conice şi cubice în probleme elementare de loc geometric Ştefan DOMINTE 1 Abstract. In this Note, a number of simple problems are presented to support the idea that conic and cubic curves can frequently
1. a. Să se scrie un algoritm care să afişeze toate numerele de patru cifre care au cifra sutelor egală cu o valoare dată k, şi cifra zecilor cu 2 mai
1. a. Să se scrie un algoritm care să afişeze toate numerele de patru cifre care au cifra sutelor egală cu o valoare dată k, şi cifra zecilor cu 2 mai mare decât cifra sutelor. b. Se consideră algoritmul
www. didactic.ro Aplicaţii ale trigonometriei în geometrie Trecem în revistă următoarele rezultate importante: 1) Teorema sinusurilor: Teorema cosinus
Aplicaţii ale trigonometriei în geometrie Trecem în revistă următoarele rezultate importante: 1) Teorema sinusurilor: Teorema cosinusurilor: Fiind dat triunghiul ABC, vom folosi următoarele notaţii:,,
Microsoft Word - Matematika_kozep_irasbeli_jav_utmut0513V28_roman.doc
Matematika román nyelven középszint 0513 ÉRETTSÉGI VIZSGA 005. május 8. MATEMATIKA ROMÁN NYELVEN MATEMATICĂ KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA EXAMEN DE BACALAUREAT NIVEL MEDIU Az írásbeli vizsga időtartama:
1 Concursul de matematic¼a NICOLAE COCULESCU EDIŢIA a VIII-a SLATINA 29 noiembrie 2012 Clasa a III-a 1. Numere, numere. a) Cinci prieteni se î
1 Concursul de matematic¼a NICOLAE COCULESCU 2011-12 EDIŢIA a VIII-a SLATINA 29 noiembrie 2012 Clasa a III-a 1. Numere, numere. a) Cinci prieteni se întâlnesc. Ei se salut¼a, ecare dând mâna cu ecare,
Concurs online de informatică Categoria PROGRAMARE PROBLEMA 1 Secţiunea 7-8 avansaţi 100 puncte DEMOCRATIE Arpsod are în curtea sa N copaci foarte băt
PROBLEMA 1 DEMOCRATIE Arpsod are în curtea sa N copaci foarte bătrâni, așezați în linie și numerotați de la 1 la N. Fiecare copac are o înălțime cunoscută, Hi. Există riscul ca la un vânt mai puternic
DAN LASCU ADRIANA-LIGIA SPORIŞ ANDA OLTEANU PAUL VASILIU MATEMATICĂ. CULEGERE DE PROBLEME TIP GRILĂ PENTRU ADMITEREA ÎN ACADEMIA NAVALĂ MIRCEA CEL BĂT
DAN LASCU ADRIANA-LIGIA SPORIŞ ANDA OLTEANU PAUL VASILIU MATEMATICĂ. CULEGERE DE PROBLEME TIP GRILĂ PENTRU ADMITEREA ÎN ACADEMIA NAVALĂ MIRCEA CEL BĂTRÂN Colecţia Matematică DAN LASCU ADRIANA-LIGIA SPORIŞ
Gheorghe IUREA Adrian ZANOSCHI algebră geometrie clasa a VII-a ediţia a V-a, revizuită mate 2000 standard EDITURA PARALELA 45 Matematică. Clasa a VII-
Gheorghe IUREA Adrian ZANOSCHI algebră geometrie clasa a VII-a ediţia a V-a, revizuită mate 2000 standard 3 Algebră Capitolul I. MULŢIMEA NUMERELOR RAŢIONALE Identificarea caracteristicilor numerelor raţionale
Concursul de Matematică Upper.School ediția 2019 Etapa III - Clasa a 7-a Lista de probleme PROBLEMA 1 / 4 punctaj: 7 Aflați numerele prime p, q, r car
Concursul de Matematică Upper.School ediția 2019 Etapa III - Clasa a 7-a Lista de probleme PROBLEMA 1 / 4 punctaj: 7 Aflați numerele prime p, q, r care satisfac simultan următoarele condiții: qr p 4 1
CONCURSUL NAŢIONAL DE MATEMATICA PANAITOPOL EDIŢIA a X-a, TULCEA, 21 aprilie 2018 Clasa a VII - a 1. Se consideră numerele reale x, y şi z, cel puţin
CONCURSUL NAŢIONAL DE MATEMATICA PANAITOPOL EDIŢIA a X-a, TULCEA, 21 aprilie 2018 Clasa a VII - a 1. Se consideră numerele reale x, y şi z, cel puţin două dintre ele fiind diferite. Arătaţi că x y z 0
Microsoft Word - EN_IV_2019_Matematica_Test_2.doc
EVALUARE NAȚIONALĂ LA FINALUL CLASEI a IV-a 2 019 MATEMATICĂ Test 2 Județul/sectorul... Localitatea... Şcoala... Numele şi prenumele elevei / elevului...... Clasa a IV-a... Băiat Fată EN IV 2019 Pagina
Noțiuni matematice de bază
Sistem cartezian definitie. Coordonate carteziene Sistem cartezian definiţie Un sistem cartezian de coordonate (coordonatele carteziene) reprezintă un sistem de coordonate plane ce permit determinarea
Microsoft Word - Programa finala olimpiadei matematica 2007 gimnaziu.doc
ROMÂNIA MINISTERUL EDUCAŢIEI ŞI CERCETĂRII DIRECŢIA GENERALĂ ÎNVĂŢĂMÂNT PREUNIVERSITAR SERVICIUL NAŢIONAL DE EVALUARE ŞI EXAMINARE PROGRAMA OLIMPIADEI DE MATEMATICĂ CLASELE V XII AN ŞCOLAR 006 / 007 Pentru
Microsoft Word - Evaluare_initiala_Matematica_Cls07_Model_Test.doc
Precizări metodologice cu privire la testul de evaluare inińială la disciplina MATEMATICĂ, din anul şcolar 011-01 În anul şcolar 011-01, modelul propus pentru testare inińială la disciplina Matematică
Microsoft Word - a5+s1-5.doc
Unitatea şcolară: Şcoala cu cls. I-VIII Sf. Vineri Profesor: Gh. CRACIUN Disciplina: Matematică Clasa a V-a / 4 ore pe săpt./ Anul şcolar 007-008 PROIECTAREA DIDACTICĂ ANUALĂ Număr săptămâni: 35 Număr
Copyright c 2001 ONG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Stiintei Examenul de bacalaureat la
Copyright c 1 ONG TCV Scoala Virtuala a Tanarului Matematician http://math.ournet.md 1 Ministerul Educatiei si Stiintei Examenul de bacalaureat la matematica, Profilurile: fizica-matematica, economie,
Microsoft Word - Rezolvarea Test 16 carte 2015.doc
Testul nr. 16 Problema 1 (30 puncte = 3 10 puncte) 500 + 65:13 95 :5 : 6. a) Să se calculeze ( ) b) Să se determine numărul natural a din egalitatea: ( ) ( a ) 500 + 65:13 95: 5 : 6 : 2 8 22 = 50. c) Suma
SSC-Impartire
Adunarea Înmulțirea Numere și operații în virgulă mobilă 1 Împărțirea cu refacerea restului parțial Împărțirea fără refacerea restului parțial 2 Primul operand: deîmpărțit (X) Al doilea operand: împărțitor
PROIECT DIDACTIC
Plan de lecție Informații generale Obiectul: Matematică Clasa: a VII - a Durata: 50 min Mijloace TIC: calculatorul profesorului cu videoproiector,calculatoare pentru elevi Tema lecției: Aria triunghiului
Subiectul 1
Subiectul 1 În fişierul Numere.txt pe prima linie este memorat un număr natural n (n
ENVI_2018_matematica_si_stiinte_Test_1_Caietul_elevului_Limba_romana
EVALUAREA NAŢIONALĂ LA FINALUL CLASEI a VI-a Anul școlar 2017-2018 Matematică şi Ştiinţe ale naturii TEST 1 Judeţul/sectorul... Localitatea... Unitatea de învățământ... Numele şi prenumele elevei/elevului......
CONCURSUL DE MATEMATICĂ APLICATĂ "ADOLF HAIMOVICI" ETAPA JUDEȚEANĂ 18 martie 2017 Filiera Tehnologică : profilul Tehnic Clasa a IX -a Problema 1. 2 Se
Clasa a IX -a Se consideră funcţia f : R R, f ( x) x mx 07, unde mr a) Determinaţi valoarea lui m ştiind că f( ), f() şi f () sunt termeni consecutivi ai unei progresii aritmetice b) Dacă f() f(4), să
BARAJ NR. 1 JUNIORI FRANŢA ianuarie Fie x şi y două numere întregi astfel încât 5x + 6y şi 6x + 5y să fie pătrate perfecte. Arătaţi că
BARAJ NR. 1 JUNIORI FRANŢA 019 9 ianuarie 019 1. Fie x şi y două numere întregi astfel încât 5x + 6y şi 6x + 5y să fie pătrate perfecte. Arătaţi că x şi y sunt divizibili cu 11.. Fie Γ un cerc de centru
CENTRUL NAŢIONAL DE EVALUARE ŞI EXAMINARE EVALUAREA COMPETENŢELOR FUNDAMENTALE LA FINALUL CLASEI a II-a 2014 Test 1 MATEMATICĂ Judeţul / sectorul... L
CENTRUL NAŢIONAL DE EVALUARE ŞI EXAMINARE EVALUAREA COMPETENŢELOR FUNDAMENTALE LA FINALUL CLASEI a II-a 2014 Test 1 MATEMATICĂ Judeţul / sectorul... Localitatea... Şcoala... Numele şi prenumele elevei
PROGRAMA CONCURSULUI NAŢIONAL
ANUL ŞCOLAR 2011-2012 CLASA a IX-a În programa de concurs pentru clasa a IX-a sunt incluse conţinuturile programelor din clasele anterioare şi din etapele anterioare. 1. Mulţimi şi elemente de logică matematică.
Coordonate baricentrice Considerăm în plan un triunghi ABC şi un punct Q în interiorul său, fixat arbitrar. Notăm σ c = aria ( QAB) σ a = aria ( QBC),
Coordonate baricentrice Considerăm în plan un triunghi ABC şi un punct Q în interiorul său, fixat arbitrar Notăm σ c = aria ( QAB) = aria ( QBC), = aria ( QCA) şi σ = aria ( ABC), astfel încât σ = + +
MergedFile
PROIECT DIDACTIC Clasa a VII-a Matematică Proiect didactic realizat de Ana-Cristina Blanariu-Șugar, profesor Digitaliada, revizuit de Ioan Popa, profesor Digitaliada Textul și ilustrațiile din acest document
rm2003ii.dvi
Concursul Florica T. Câmpan, ediţia a III-a 1 Faza judeţeană, 1 martie 2003 Clasa a IV-a 1. Care este cel mai mare număr care împărţitla10dă câtul 9? 2. Să se ordoneze numerele din şirul următor în ordinea
Microsoft Word - Matematika_kozep_irasbeli_javitasi_0911_roman.doc
Matematika román nyelven középszint 0911 ÉRETTSÉGI VIZSGA 011. május. MATEMATIKA ROMÁN NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Indicaţii
Teoreme cu nume 1. Problema (Năstăsescu IX, p 147, propoziţia 5) Formula lui Chasles Pentru orice puncte M, N şi P avem MN + NP = MP.
Teoreme cu nume Problema (Năstăsescu IX, p 47, propoziţia 5) Formula lui hasles Pentru orice puncte M, N şi P avem MN + NP = MP 2 Problema (Năstăsescu IX, p 68, teoremă) Vectorul de poziţie al centrului
INSPECTORATUL ŞCOLAR JUDEŢEAN VÂLCEA COLEGIUL NAŢIONAL DE INFORMATICĂ MATEI BASARAB RÂMNICU VÂLCEASTR. HENRI COANDĂ NR.2 TELEFON/FAX:
INSPECTORATUL ŞCOLAR JUDEŢEAN VÂLCEA COLEGIUL NAŢIONAL DE INFORMATICĂ MATEI BASARAB RÂMNICU VÂLCEASTR. HENRI COANDĂ NR.2 TELEFON/FAX: 0350401742 0350401742 WEB: www.cnimateibasarab.ro E-MAIL: liceulmateibasarab@yahoo.com
Secţiunea 5-6 avansaţi PROBLEMA 1 Concurs online de informatică Categoria PROGRAMARE 100 puncte NR Un număr natural nenul V care se plictisea singur,
PROBLEMA 1 NR Un număr natural nenul V care se plictisea singur, și-a căutat în prima zi cel mai mare divizor al său mai mic decât el și l-a scăzut din valoarea sa. Numărul rămas, plictisit și el, și-a
Matematica Clasa 5 Culegere De Exercitii Si Probleme
uprins Teste de evaluare inițială... 7 4 I. Numere naturale. Numere naturale... 9. Scrierea şi citirea numerelor naturale... 9.2 xa numerelor naturale. ompararea şi ordonarea numerelor naturale... 4.3
RecMat dvi
Probleme propuse 1 P355. Găsiţi trei numere consecutive în şirul numerelor de la 1 la 30 care să aibă suma 30. (Clasa pregătitoare) Mariana Manoli, elevă, Iaşi P356. Colorează figura geometrică care nu
Clasele primare Probleme propuse 1 P.164. Scrie vecinii vecinului comun al numerelor 16 şi 18. (Clasa I ) Diana Tănăsoaie, elevă, Iaşi P.165. După ce
Clasele primare Probleme propuse 1 P.164. Scrie vecinii vecinului comun al numerelor 16 şi 18. (Clasa I ) Diana Tănăsoaie, elevă, Iaşi P.165. După ce dau celor doi fraţi mai mari câte două banane, mănânc
1. Teorema lui Ceva Ene Mihai+Radu Vlad+Budacu Vlad
1. Teorema lui Ceva Ene Mihai+Radu Vlad+Budacu Vlad 2. Teorema lui Menelaus Ciocan Cristian+Cioară Alexandru+Răileanu Daniel 3. Teorema lui Pitagora Paraipan Rareș+Postelnicu Marius+Anghel Mircea
ENVI_2019_matematica_si_stiinte_Test_2_Caietul_elevului_Limba_romana
EVALUAREA NAŢIONALĂ LA FINALUL CLASEI a VI-a Anul școlar 2018-2019 Matematică şi Ştiinţe ale naturii TEST 2 Judeţul/sectorul... Localitatea... Unitatea de învățământ... Numele şi prenumele elevei/elevului......
TESTE –GRILA
ADMITERE 2019 FACULTATEA DE EDUCAŢIE FIZICĂ ŞI SPORT DOMENIU: EDUCAŢIE FIZICĂ ŞI SPORT / KINETOTERAPIE Media FINALĂ de admitere se calculează din: 50% nota de la proba de aptitudini motrice specifice;
Microsoft Word - EN_IV_2019_Matematica_Test_1.doc
EVALUARE NAȚIONALĂ LA FINALUL CLASEI a IV-a 2 019 MATEMATICĂ Test 1 Județul/sectorul... Localitatea... Şcoala... Numele şi prenumele elevei / elevului...... Clasa a IV-a... Băiat Fată EN IV 2019 Pagina
Microsoft Word - dice town.docx
Undeva în estul sălbatic american... O mină de aur, teritorii propice pentru creşterea animalelor, nici nu este nevoie de mai mult pentru a atrage aventurieri de toate tipurile. Un mic orăşel a fost repede
1 - - Cu ce calatoresc spre vacanta, de vis Recunoaşte mijloacele de transport cu care călătoreşti în vacanţă. a) Scrie-le numele sub imagini
1 - - Cu ce calatoresc spre vacanta, de vis Recunoaşte mijloacele de transport cu care călătoreşti în vacanţă. a) Scrie-le numele sub imagini. b) Rescrie denumirile în ordine alfabetică. c) Desparte în
OBIECTIVE DE REFERINŢĂ ŞI EXEMPLE DE ACTIVITĂŢI DE ÎNVAŢARE 1. Cunoaşterea şi înţelegerea conceptelor, a terminologiei şi a procedurilor de calcul Obi
OBIECTIVE DE REFERINŢĂ ŞI EXEMPLE DE CTIVITĂŢI DE ÎNVŢRE. Cunoaşterea şi înţelegerea conceptelor, a terminologiei şi a procedurilor de calcul Obiective de referinţă Exemple de activităţi de învăţare La
COMENTARII FAZA JUDEŢEANĂ, 9 MARTIE 2013 Abstract. Personal comments on some of the problems presented at the District Round of the National Mathemati
COMENTARII FAZA JUDEŢEANĂ, 9 MARTIE 2013 Abstract. Personal comments on some of the problems presented at the District Round of the National Mathematics Olympiad 2013. Data: 12 martie 2013. Autor: Dan
Secţiunea 7-8 începători Concurs online de informatică Categoria PROGRAMARE PROBLEMA 1 ID 100 puncte Calculatoarele trebuie să se recunoască în rețeau
PROBLEMA ID 00 puncte Calculatoarele trebuie să se recunoască în rețeaua de Internet printr-un ID. În prezent, există metode de identificare a ID-ului folosite la scară globală: IPv4 și IPv6. Adresele
Matematika román nyelven középszint Javítási-értékelési útmutató 1813 ÉRETTSÉGI VIZSGA május 7. MATEMATIKA ROMÁN NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VI
Matematika román nyelven középszint 83 ÉRETTSÉGI VIZSGA 09. május 7. MATEMATIKA ROMÁN NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Informaţii utile
Modificările Codului muncii (III). Probleme privind concediile de odihnă: clarificări parţiale
Modificările Codului muncii (III). Probleme privind concediile de odihnă: clarificări parţiale Horațiu Sasu, jurist și economist, consultant în afaceri în Sibiu Modificările Codului muncii elimină prevederea
CERCURI REMARCABILE ASOCIATE UNUI TRIUNGHI CERCURI EXÎNSCRISE Natura vorbeşte în limbajul matematicii: literele acestei limbi sunt cercuri, tri
CERCURI REMARCABILE ASOCIATE UNUI TRIUNGHI 19 3. CERCURI EXÎNSCRISE Natura vorbeşte în limbajul matematicii: literele acestei limbi sunt cercuri, triunghiuri şi alte guri geometrice. Galileo Galilei 3
Programarea şi utilizarea calculatoarelor
Universitatea Constantin Brâncuşi din Târgu-Jiu Facultatea de Inginerie Departamentul de Automatică, Energie şi Mediu Programarea calculatoarelor Lect.dr. Adrian Runceanu Curs 6 Instrucţiunile limbajului
C:/Users/Lenovo/Dropbox/activitate matematica/cursuri/MS ETTI /msetti.dvi
Curs 1 Noţiuni de teoria câmpului 1.1 Vectori şi operaţii cu vectori 1.1.1 Scalari şi vectori Definiţie 1.1. Un număr real λ R se va numi scalar. O pereche de numere reale (a 1,a ) R se va numi vector
PROGRAMA CONCURSUL MICII CAMPIONI I. COMPETENȚE SPECIFICE ȘI EXEMPLE DE ACTIVITĂȚI DE ÎNVAȚARE 1.1. Explicarea unor modele / regularităţi, pent
PROGRAMA CONCURSUL MICII CAMPIONI - 2019 I. COMPETENȚE SPECIFICE ȘI EXEMPLE DE ACTIVITĂȚI DE ÎNVAȚARE 1.1. Explicarea unor modele / regularităţi, pentru crearea de raţionamente proprii identificarea unor
Probleme rezolvate informatica: Probleme rezolvate grafuri si a
Mai multe Creați blog Autentificare LUNI, 11 MARTIE 2013 Probleme rezolvate grafuri si arbori Probleme rezolvate de catre : Ginghina Cristian Onica Viorel Neculai Alexandru Anton Cosmin INFORMATICA Teorie
Probleme proiect TP BITPERM Implementați un algoritm care citește de la intrarea standard două numere naturale și scrie la ieșirea standard da
Probleme proiect TP 2016 1. BITPERM Implementați un algoritm care citește de la intrarea standard două numere naturale și scrie la ieșirea standard dacă reprezentarea binară a unuia dintre numere poate
Slide 1
SCTR -SZOKE ENIKO - Curs 4 continuare curs 3 3. Componentele hard ale unui sistem de calcul in timp real 3.1 Unitatea centrala de calcul 3.1.1 Moduri de adresare 3.1.2 Clase de arhitecturi ale unitatii
E_d_Informatica_sp_SN_2014_bar_10_LRO
Examenul de bacalaureat naţional 2014 Proba E. d) Informatică Varianta 10 Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore. În rezolvările cerute,
ALGORITMII ŞI REPREZENTAREA LOR Noţiunea de algoritm Noţiunea de algoritm este foarte veche. Ea a fost introdusă în secolele VIII-IX de către Abu Ja f
ALGORITMII ŞI REPREZENTAREA LOR Noţiunea de algoritm Noţiunea de algoritm este foarte veche. Ea a fost introdusă în secolele VIII-IX de către Abu Ja far Mohammed ibn Musâ al- Khowârizmî în cartea sa intitulată
BAC 2007 Pro Didactica Programa M1 2 Rezolvarea variantei 61 versiune finală Redactia Pro Didactica Suportul pe net:
BAC 7 Pro Didactica Programa M Rezolvarea variantei 6 versiune finală Redactia Pro Didactica Suportul pe net: http://www./ CAPITOLUL Varianta 6. Subiectul I. (a) Coordonatele punctelor C şi D satisfac
Secţiunea 5-6 începători Concurs online de informatică Categoria PROGRAMARE PROBLEMA puncte PERIODIC Se citește un număr natural nenul N. Se ump
PROBLEMA 1 PERIODIC Se citește un număr natural nenul N. Se umple, pe linii, partea de sub diagonală, inclusiv aceasta, a unui tabel pătratic de dimensiune L cu secvențe consecutive de numere : 1, 2,,
Microsoft Word - SUBIECTE FAZA LOCALA FEBRUARIE 2007
CLASA a - V a 1 007 1. a) ArătaŃi că umărul A= 1+ + + +... + este divizibil cu 15. b) La u cocurs de matematică au participat elevi di clasele a V-a A, a V-a B şi a V-a C. 7 de elevi u sut di clasa a V-a
GHERCĂ MAGDA CASA CORPULUI DIDACTIC BRĂILA PORTOFOLIU EVALUARE INFORMATICĂ ȘI TIC PENTRU GIMNAZIU CLASA A V-A Neamț SERIA 1 GRUPA 1 CURSANT: GHERCĂ G
CASA CORPULUI DIDACTIC BRĂILA PORTOFOLIU EVALUARE INFORMATICĂ ȘI TIC PENTRU GIMNAZIU CLASA A V-A Neamț SERIA 1 GRUPA 1 CURSANT: GHERCĂ G MAGDA COLEGIUL NAŢIONAL ROMAN-VODĂ ROMAN PROIECTUL UNITĂŢII DE ÎNVĂŢARE
Secţiunea 9-10 avansaţi Concurs online de informatică Categoria PROGRAMARE PROBLEMA 1 TEXT 100 puncte Un text este format din una sau mai multe propoz
PROBLEMA TEXT 00 puncte Un text este format din una sau mai multe propoziții separate pe linii. O propoziție este formată din două sau mai multe cuvinte separate prin câte un spațiu. Fiecare cuvânt este
Microsoft Word - Programa_Evaluare_Nationala_2011_Matematica.doc
C E N T R U L NAłIONAL DE EVALUARE ŞI E X A M I N A R E PROGRAMA PENTRU DISCIPLINA MATEMATICĂ EVALUAREA NAłIONALĂ PENTRU ELEVII CLASEI A VIII A Pagina 1 din 5 PROGRAMA PENTRU DISCIPLINA MATEMATICĂ I. STATUTUL
Semestrul I Unitatea de învățare: Numere și sunete din jurul nostru Nr. de ore alocat: 15 ore (12 + 3) Proiectarea unităților de învățare Nr. crt. Det
Semestrul I Unitatea de învățare: Numere și sunete din jurul nostru de ore alocat: 15 ore (1 + 3) Proiectarea unităților de învățare crt. Detalii de conținut Competențe Activități de învățare 1. Formarea,
1. Operatii cu matrici 1 Cerinte: Sa se realizeze functii pentru operatii cu matrici patratice (de dimensiune maxima 10x10). Operatiile cerute sunt: A
1. Operatii cu matrici 1 Sa se realizeze functii pentru operatii cu matrici patratice (de dimensiune maxima 10x10). Operatiile cerute sunt: A+B (adunare), aa (inmultire cu scalar), A-B scadere), AT (Transpusa),
O NOUA PROBLEMA DE CONCURS OLIMPIADA MUNICIPALA DE INFORMATICA, IASI 2019 V-am promis într-un articol mai vechi ca vom prezenta pe acest blog câteva p
O NOUA PROBLEMA DE CONCURS OLIMPIADA MUNICIPALA DE INFORMATICA, IASI 2019 V-am promis într-un articol mai vechi ca vom prezenta pe acest blog câteva problema interesante. Astăzi ne-am propus sa va supunem
Microsoft Word - Algoritmi genetici.docx
1.1 Generalităţi Algoritmii genetici fac parte din categoria algoritmilor de calcul evoluționist și sunt inspirați de teoria lui Darwin asupra evoluției. Idea calculului evoluționist a fost introdusă în
AUTORITATEA ELECTORALĂ PERMANENTĂ HOTĂRÂRE pentru aprobarea modelelor, dimensiunilor şi condiţiilor de tipărire ale buletinelor de vot care vor fi fol
AUTORITATEA ELECTORALĂ PERMANENTĂ HOTĂRÂRE pentru aprobarea modelelor, dimensiunilor şi condiţiilor de tipărire ale buletinelor de vot care vor fi folosite în secțiile de votare la alegerea Senatului și
1
Contents 1 Automate finite... 2 1.1 Probleme cu AF... 2 1.2 Structuri de date pentru automate finite... 4 2 Gramatici si limbaje; gram. indep. de context... 5 2.1 Limbaje... 5 2.2 Gramatici si limbaje...
PROIECT DIDACTIC PROFESOR: CIUREA ALINA MIHAELA DATA: ŞCOALA GIMNAZIALĂ NR. 1 ORBEASCA DE SUS CLASA a III a EFECTIVUL: 18 elevi: 8 fete, 10
PRIECT DIDACTIC PRFESR: CIUREA ALINA MIHAELA DATA: 27.02.2017 ŞCALA GIMNAZIALĂ NR. 1 RBEASCA DE SUS CLASA a III a EFECTIVUL: 18 elevi: 8 fete, 10 băieţi LC DE DESFĂŞURARE: sală de sport. MATERIALE : mingi
DISCIPLINA: Matematică și explorarea mediului, clasa a II-a PROIECTAREA UNITĂȚII DE ÎNVĂȚARE UNITATEA DE ÎNVĂŢARE: Universul. Planetele. Timpul.Banii
DISCIPLINA: Matematică și explorarea mediului, clasa a II-a PROIECTAREA UNITĂȚII DE ÎNVĂȚARE UNITATEA DE ÎNVĂŢARE: Universul. Planetele. Timpul.Banii PERIOADA: 3 săptămâni (S 12-13-14), 4 ore/ săptămână
Ministerul Educatiei, Cercetarii si Tineretului Grup Scolar Gh. Asachi Galati Proiect pentru obtinerea certificatului de competente profesionale Speci
Ministerul Educatiei, Cercetarii si Tineretului Grup Scolar Gh. Asachi Galati Proiect pentru obtinerea certificatului de competente profesionale Specializare : matematica-informatica 2006-2007 Tema proiectului:
Microsoft Word - Proiect didactic MEM clasa a II-a
PROIECT DE LECȚIE Școala Gimnazială Carmen Sylva Iași CLASA: a II-a DATA: ÎNV. : CONSTANTINESCU GIANINA-CLAUDIA ARIA CURRICULARĂ: Matematică şi științe ale naturii DISCIPLINA: Matematică și explorarea
SUBPROGRAME
SUBPROGRAME Un subprogram este un ansamblu ce poate conţine tipuri de date, variabile şi instrucţiuni destinate unei anumite prelucrări (calcule, citiri, scrieri). Subprogramul poate fi executat doar dacă
Manual de proceduri
CENTRUL NAŢIONAL DE EVALUARE ŞI EXAMINARE Manual de proceduri pentru administrarea Evaluărilor Naţionale la finalul claselor a II-a, a IV-a şi a VI-a în anul şcolar 2013-2014 (EN 2014) mai 2014 CUPRINS:
Autoevaluare curs MN.doc
Anul II, IEI IFR Semestrul I Metode numerice Chestionar de autoevaluare C1 1 Să se scrie o procedură care să calculeze produsul scalar a doi vectori 2 Să se scrie o procedură de înmulţire a matricelor
Logică și structuri discrete Limbaje regulate și automate Marius Minea marius/curs/lsd/ 24 noiembrie 2014
Logică și structuri discrete Limbaje regulate și automate Marius Minea marius@cs.upt.ro http://www.cs.upt.ro/ marius/curs/lsd/ 24 noiembrie 2014 Un exemplu: automatul de cafea acțiuni (utilizator): introdu
Microsoft Word - pr328_12.doc
PARLAMENTUL ROMÂNIEI CAMERA DEPUTAŢILOR SENATUL L E G E pentru modificarea şi completarea Ordonanţei de urgenţă a Guvernului nr. 195/2002 privind circulaţia pe drumurile publice Parlamentul României adoptă
Limbaje Formale, Automate si Compilatoare
Limbaje Formale, Automate şi Compilatoare Curs 1 2018-19 LFAC (2018-19) Curs 1 1 / 45 Prezentare curs Limbaje Formale, Automate şi Compilatoare - Curs 1 1 Prezentare curs 2 Limbaje formale 3 Mecanisme
Cursul 7 Formula integrală a lui Cauchy Am demonstrat în cursul precedent că, dacă D C un domeniu simplu conex şi f : D C o funcţie olomorfă cu f cont
Cursul 7 Formula integrală a lui Cauchy Am demonstrat în cursul precedent că, dacă D C un domeniu simplu conex şi f : D C o funcţie olomorfă cu f continuă pe D, atunci, pe orice curbă rectificabilă şi
Microsoft Word - Curs_08.doc
Partea a II-a. Proiectarea bazelor de date Capitolul 6. Tehnici de proiectare şi modele În capitolele precedente s-au analizat modele de baze de date şi limbaje, presupunând în cele mai multe cazuri că