Lucrarea de laborator nr. 7

Mărimea: px
Porniți afișarea la pagina:

Download "Lucrarea de laborator nr. 7"

Transcriere

1 Lucrre de lortor nr. 7 I. Scopul lucrării Derivre proximtivă Integrre numerică II. Conținutul lucrării 1. Formule de derivre proximtivă folosind dezvoltări în serie Tylor. Proceduri MAPLE pentru implementre formulelor de derivre proximtivă. Exemple 3. Integrre numerică - Formul dreptunghiurilor. - Formul trpezelor III. Prezentre lucrării III.1. Formule de derivre proximtivă folosind dezvoltări în serie Tylor Fie f : [, ] R, derivilă. Se recurge l proximre derivtei unei funcții f su derivtelor ei de ordin superior tunci când expresi lui f este pre complictă su când nu se cunoște expresi nlitică funcției f (f este dtă prin intermediul unui tel de vlori). Fie f : [, ] R, derivilă. Presupunem că se du n+1 puncte distincte în intervlul [, ], x0, x1,., xn, în cre se cunosc vlorile funcției f. Prezentăm o tehnică de găsire unor formule de proximre pentru vlorile derivtelor de orice ordin le funcției f. Acestă tehnică re l ză formul lui Tylor. 1

2 Mădălin Roxn Buneci Metode Numerice Lortor Remintim cestă formulă. Fie I un intervl de numere rele, I și f : I R o funcție de n ori derivilă în. Polinomul Tylor de ordin n tșt lui f în punctul este funcți polinomilă T,n : I R, definită prin: T,n(x) = f() + f ' 1! (x-) + f"! (x-) + f n n! (x-) n. Restul formulei Tylor de ordin n tșt funcției f în punctul este funcți R,n : I R definită prin R,n(x) = f(x) - T,n(x). Eglitte f(x) = T,n(x) + R,n(x) vlilă pentru orice x I se numește formulă Tylor de ordin n tștă funcției f în punctul. Se demonstreză că R lim x x,x n = 0. Dcă f este de clsă C n+1, tunci există u strict cuprins între și x (su echivlent există (0, 1) stfel încât u = + (x )) cu propriette că R,n(x) = n1 f u n 1! (x - ) n+1. Ne propunem să proximăm vlorile derivtelor de ordinul întâi și doi le funcției f în punctul xi [, ] când sunt cunoscute vlorile funcției în punctele cre nu sunt nepărt echidistnte, dică: xi-1, xi, xi+1 xi-1 = xi h, xi+1 = xi + h. Presupunem că f este de 3 ori derivilă și scriem formul lui Tylor de ordinul tștă lui f în xi: f (x i) f (x i) f (w x) 3 f (x) f (x i) (x x i) (x x i) (x x i). 1!! 3! cu wx stric cuprins între x și xi. Înlocuim în cestă formulă x = xi-1, respectiv x = xi+1 și oținem relțiile: f (x i) f (x i)h f (u) 3 f (x i1) f (x i) ( h) ( h) (1) 1!! 3!

3 f (x i) f (x i) f (v) 3 3 f (x i1) f (x i) h h h () 1!! 3! cu u strict cuprins între xi-1 și xi și v strict cuprins între xi și xi+1. Scăzând din dou relție prim relție înmulțită cu oținem: f (v) f (u) f (x ) f x 1 f (x ) h h f (x 3! 3! i) h i1 i i1 Putem proxim vlore derivtei funcției f în xi prin: cu erore: i1 i i1 f (x ) f x 1 f (x ) f (x i) h 1 f (v) f (u) h 1 3! 1 3! cre tinde l zero odtă cu h. Adunând l dou relție prim înmulțită cu oținem: f (v) f (u) f (x i1) 1 f (x i) f (x i1) h h 3! 3! f (x i) h Putem stfel proxim vlore derivtei de ordinul doi l lui f în xi prin f (x ) cu erore cre tinde l zero odtă cu h. f (x ) 1 f (x ) f (x ) i1 i i1 i h 1 h f (v) f (u) Dcă nodurile sunt echidistnte (dică dcă = 1) se oțin următorele formule de proximre: f (x i 1) f (x i 1) f (x i) h. 3

4 Mădălin Roxn Buneci Metode Numerice Lortor f (x i 1) f (x i) f (x i 1) f (x i). h III.. Proceduri MAPLE pentru implementre formulelor de derivre proximtivă. Exemple Procedură MAPLE pentru determinre vlorilor proximtive le derivtei de ordinul 1 Procedur d1 dmite drept prmetri list x ce conține punctele x1, x,., xn și list y ce conține vlorile y1 = f(x1), y = f(x),., yn= f(xn). Procedur întorce list proximțiilor derivtei de ordinul I lui f în punctele x, x3,..., xn-1. > d1:=proc(x,y) locl df,h,lph,i,n; n:=nops(x);df:=[seq(1,i=1..n-)]; for i from to n-1 do h:=x[i]-x[i-1]; lph:=(x[i+1]-x[i])/h; df[i-1]:=(y[i+1]+y[i]*(lph^-1)-lph^*y[i-1])/ (h*lph*(lph+1)) end do; return df; end proc; Procedură MAPLE pentru determinre vlorilor proximtive le derivtei de ordinul Procedur d dmite drept prmetri list x ce conține punctele x1, x,., xn și list y ce conține vlorile y1 = f(x1), y = f(x),., yn= f(xn). Procedur întorce list 4

5 proximțiilor derivtei de ordinul l II-le lui f în punctele x, x3,..., xn-1. > d:=proc(x,y) locl df,h,lph,i,n; n:=nops(x);df:=[seq(1,i=1..n-)]; for i from to n-1 do h:=x[i]-x[i-1]; lph:=(x[i+1]-x[i])/h; df[i-1]:=*(y[i+1]-(lph+1)*y[i]+lph*y[i- 1])/(h^*lph*(lph+1)) end do; return df; end proc; Exemple > x1:=[seq(-1+*i/5,i=0..5)]; > f1:=t->ln(1+t^); > y1:=[seq(evlf(f1(-1+*i/5)),i=0..5)]; > d1(x1,y1); > d(x1,y1); x1 := -1, ,,,, f1 := t ln( 1t ) y1 := [ , , , , , ] [ , , , ] [ , , , ] > z1:=[seq(d(f1)(-1+*i/5),i=1..4)]; z1 := ,,, > 5

6 Mădălin Roxn Buneci Metode Numerice Lortor > mp(evlf,d1(x1,y1)); > mp(evlf,z1); > mp(evlf,d(x1,y1)); > mp(evlf,z); z := ,,, [ , , , ] [ , , , ] [ , , , ] [ , , , ] III.3. Integrre numerică Fie f : [, ] R o funcție continuă. Ne punem prolem să clculăm vlore proximtivă integrlei f (x) (x)dx, unde : [, ]R este o funcție continuă strict pozitivă numită pondere. Considerăm x0, x1,, xn n+1 puncte distincte din intervlul [, ], și notăm yi = f(xi) pentru orice i = 0,1, n. Fie Ln polinomul Lgrnge socit lui f și punctelor considerte: Ln(x) = x x0 x x 1... x xi1 x x i1... x xn n yi i0 x i x 0 x i x 1... x i x i1 x i x i1... x i x n Înlocuind f prin Ln, oținem formul de proximre Reprezentăm punctele su form și oținem xi = f (x) (x)dx L (x) (x)dx t i, ti [-1, 1], i 0, 1,..., n n 6

7 n f (x) (x)dx 1 i i0 1 (t t 0) (t t i 1)(t t i 1) (t t n) f (x ) ( t) dt. (t t ) (t t )(t t ) (t t ) ( formul generlă de cudrtură) i 0 i i1 i i1 i n Restul formulei generle de cudrtură (erore solută) este: Rn(f) unde M = sup x [,] M n 1! n n, 1 t (t t )(t t ) (t t )dt f( n+1) (x). III.3.1. Formul dreptunghiurilor Fie f : [, ] R o funcție de clsă C 1. Aplicând formul generlă de cudrtură pentru 1, n=0, x0 = (deci t0 = 0) oținem f (x)dx (-) f cu o erore 4 sup f ' x, x. Considerăm o diviziune (x0, x1,., xn) intervlului [, ] cu puncte echidistnte (xi = + formul de proximre i, i = 0, 1,,, n.) și plicăm pe fiecre suintervl [xi,xi+1] n x f xdx (xi+1-xi) i x f i1 x i 1 x i Se oține stfel formul dreptunghiurilor: 7

8 Mădălin Roxn Buneci Metode Numerice Lortor Restul (erore) este dt de: f (x)dx n n 1 xi x f i1 i0. n1 xi x f i 1 xdx f n i0 4n sup f ' x, x Interpretre geometrică formulei dreptunghiurilor Fie Di dreptunghiul cu o dimensiune dtă intervlul [xi, xi+]] și cu celltă x dimensiune dtă de i x f i1 xi xi+1 Atunci ri dreptunghiului Di este x x f = xi x f i1 n, (xi+1-xi) i i1 și deci formul dreptunghiurilor presupune proximre f (x)dx prin sum riilor 8

9 dreptunghiurilor Di, i = 0, 1, n-1. Proceduri MAPLE pentru clculul vlorii proximtive unei integrle definite folosind formul dreptunghiurilor Procedur dreptunghiuri1 re drept prmetri funcți cre se integreză, limitele de integrre, și numărul de suintervle din diviziune. Procedur întorce vlore proximtivă integrlei oținută plicând formul dreptunghiurilor. Procedur dreptunghiuri este similră, cu singur deoseire că în locul numărului de suintervle se introduce un număr pozitiv eps ce reprezintă erore mximă. > dreptunghiuri1:=proc(f,,,n) locl i,i,h,h0; i:=0;h:=(-)/n;h0:=+1/*h; for i from 0 to n-1 do i:=i+evlf(f(h0+i*h)) end do; i:=i*h; return evlf(i) end proc; > dreptunghiuri:=proc(f,,,eps) locl i,i,h,h0,n;n:=floor(1/4*(-)^/eps)+1; print(`numr de psi`,n); h:=(-)/n;i:=0;h0:=+1/*h; for i from 0 to n-1 do i:=i+evlf(f(h0+i*h)) end do; i:=i*h; return evlf(i) 9

10 Mădălin Roxn Buneci Metode Numerice Lortor end proc; Exemple > f:=(x->x^7*ln(x)+x*cos(x)); > evlf(int(f(x),x=..3)); > dreptunghiuri1(f,,3,5); > dreptunghiuri1(f,,3,50); > dreptunghiuri1(f,,3,500); > dreptunghiuri(f,,3,0.01); > dreptunghiuri(f,,3,0.001); > dreptunghiuri(f,,3,0.0001); > g:=(x->exp(-x^)); > evlf(int(g(x),x=-1..1)); f := xx 7 ln( x) x cos( x) Numr de psi, Numr de psi, Numr de psi, g := xe ( x) > dreptunghiuri1(g,-1,1,5); 10

11 > dreptunghiuri1(g,-1,1,10); > dreptunghiuri1(g,-1,1,500); > dreptunghiuri(g,-1,1,0.01); > dreptunghiuri(g,-1,1,0.001); > dreptunghiuri(g,-1,1,0.0001); > with(student): Numr de psi, Numr de psi, Numr de psi, > middlesum(g(x),x=-1..1,5); > evlf(middlesum(g(x),x=-1..1,5)); > middleox(g(x),x=-1..1,5); 5 4 i0 e 4/ 5 i

12 Mădălin Roxn Buneci Metode Numerice Lortor > middlesum(g(x),x=-1..1,10); > evlf(middlesum(g(x),x=-1..1,10)); > middleox(g(x),x=-1..1,10); i0 e i 9/ Comnd middlesum(g(x), x=..,n) din pchetul student întorce proximți integrlei g(x)dx oținută prin plicre formulei dreptunghiurilor utilizând n suintervle. Comnd middleox(g(x), x=..,n) reprezintă grfic dreptunghiurile utilizte în formulei dreptunghiurilor. 1

13 III.3.. Formul trpezelor Fie f : [, ] R o funcție de clsă C. Aplicăm formul generlă de cudrtură pentru 1, n=1, x0 =, x1 = (deci t0 = -1 și t1 =1). Oținem f (x)dx (f() +f()). cu erore f (x)dx - (f() +f()) 1 3 sup f " x, Considerăm o diviziune (x0, x1,., xn) intervlului [, ] cu puncte echidistnte (xi = + i, i = 0, 1,,, n.) și plicăm pe fiecre suintervl [xi,xi+1] n formul de proximre x f xdx i1 xi ( f(xi) + f(xi+1)) x i 1 x i Oținem următore formulă de cudrtură numită formul trpezelor: x. Restul (erore) este dt de: f (x)dx n f f n1 fxi. i1 f f n1 f xdx f xi 3 n i1 1n sup f " x, x Interpretre geometrică formulei trpezelor Fie Ti trpezul dreptunghic cu înălțime eglă cu lungime intervlului [xi, xi+]] și cu zele f(xi) și f(xi+1). 13

14 Mădălin Roxn Buneci Metode Numerice Lortor f(xi+1) f(xi) xi xi+1 Atunci ri trpezului Ti este xi1 xi ( f(xi) + f(xi+1)) = ( f(xi) + f(xi+1)), n și deci formul trpezelor rtă că trpezelor Ti, i = 0, 1, n-1. f x dx se pote proxim prin sum riilor Proceduri MAPLE pentru clculul vlorii proximtive unei integrle definite folosind formul trpezelor Procedur trpeze1 re drept prmetri funcți cre se integreză, limitele de integrre, și numărul de suintervle din diviziune. Procedur întorce vlore proximtivă integrlei oținută plicând formul trpezelor. Procedur trpeze este similră, cu singur deoseire că în locul numărului de suintervle se introduce un număr pozitiv eps ce reprezintă erore mximă. > trpeze1:=proc(f,,,n) locl i,i,h; i:=0;h:=(-)/n;; for i from 1 to n-1 do i:=i+evlf(f(+i*h)) end do; 14

15 i:=i+(f()+f())/;i:=i*h; return evlf(i) end proc; > trpeze:=proc(f,,,eps) locl i,i,h,n;n:=floor(s(()^3/(1*eps))^(1/))+1; print(`numr de psi`,n); h:=(-)/n;i:=0; for i from 1 to n-1 do i:=i+evlf(f(+i*h)) end do; i:=i+(f()+f())/;i:=i*h; return evlf(i) end proc; Exemple > f:=(x->x^7*ln(x)+x*cos(x)); > evlf(int(f(x),x=..3)); > trpeze1(f,,3,5); > trpeze1(f,,3,50); > trpeze1(f,,3,500); > trpeze(f,,3,0.01); > trpeze(f,,3,0.001); f := xx 7 ln( x) x cos( x) Numr de psi,

16 Mădălin Roxn Buneci Metode Numerice Lortor > trpeze(f,,3,0.0001); > g:=(x->exp(-x^)); > evlf(int(g(x),x=0..1)); Numr de psi, Numr de psi, g := xe ( x) > trpeze1(g,0,1,5); > trpeze1(g,0,1,50); > trpeze1(g,0,1,500); > trpeze(g,0,1,0.01); > trpeze(g,0,1,0.001); > trpeze(g,0,1,0.0001); > trpeze(g,0,1,10^(-8)); Numr de psi, Numr de psi, Numr de psi, Numr de psi,

17 > with(student): > trpezoid(g(x),x=-1..1,5); 5 e (-1) 5 4 i1 > evlf(trpezoid(g(x),x=-1..1,5)); > trpezoid(g(x),x=-1..1,10); 1 5 e (-1) 1 5 e i1 e 1 i 5 i 1 5 > evlf(trpezoid(g(x),x=-1..1,10)); Comnd trpezoid(g(x), x=..,n) din pchetul student întorce proximți integrlei g(x)dx oținută prin plicre formulei trpezelor utilizând n suintervle

PowerPoint Presentation

PowerPoint Presentation Metode Numerice de Integrre și Derivre Funcțiilor dte Numeric Ș.l. Dr. ing. Levente CZUMBIL E-mil: Levente.Czumil@ethm.utcluj.ro WePge: http://users.utcluj.ro/~czumil Formul clsică trpezelor rezultă prin

Mai mult

Seminarul 1

Seminarul 1 Mtemtici specile Seminrul Februrie 8 ii Fr bteri de l norm progresul nu este posibil. Frnk Zpp Integrle improprii Motivtie: Folosind integrl definit putem integr functii continue pe intervle mrginite.

Mai mult

M1-ACS, , M. Olteanu Notițe de Adrian Manea Seminar 9 Extreme cu legături. Integrale improprii 1 Extreme condiționate Atunci cînd domeniul de

M1-ACS, , M. Olteanu Notițe de Adrian Manea Seminar 9 Extreme cu legături. Integrale improprii 1 Extreme condiționate Atunci cînd domeniul de Seminr 9 Extreme u legături. Integrle improprii Extreme ondiționte Atuni înd domeniul de definiție l unei funții de mi multe vribile onține, l rîndul său numite euții (numite, generi, legături, problemele

Mai mult

Societatea de Ştiinţe Matematice din România Ministerul Educaţiei Naţionale Olimpiada Naţională de Matematică Etapa Naţională, Braşov, 2 aprilie 2013

Societatea de Ştiinţe Matematice din România Ministerul Educaţiei Naţionale Olimpiada Naţională de Matematică Etapa Naţională, Braşov, 2 aprilie 2013 Societte de Ştiinţe Mtemtice din Români Ministerul Educţiei Nţionle Olimpid Nţionlă de Mtemtică Etp Nţionlă, Brşov, 2 prilie 213 Cls XII- Problem 1. Să se determine funcţiile continue f : R R cu propriette

Mai mult

Curs 8 Derivabilitate şi diferenţiabilitate pentru funcţii reale 8.1 Derivata şi diferenţiala unei funcţii reale. Propriet¼aţi generale De niţia 8.1.1

Curs 8 Derivabilitate şi diferenţiabilitate pentru funcţii reale 8.1 Derivata şi diferenţiala unei funcţii reale. Propriet¼aţi generale De niţia 8.1.1 Curs 8 Derivbilitte şi diferenţibilitte pentru funcţii rele 8.1 Derivt şi diferenţil unei funcţii rele. Propriet¼ţi generle De niţi 8.1.1 (i) Fie f A R! R şi 2 A 0 \ A Spunem c¼ f re derivt¼ în punctul

Mai mult

Cursul 6 Integrala în complex Fie f : D C o funcţie continuă pe domeniul D C. Ne punem problema existenţei unei primitive a lui f, adică a unei funcţi

Cursul 6 Integrala în complex Fie f : D C o funcţie continuă pe domeniul D C. Ne punem problema existenţei unei primitive a lui f, adică a unei funcţi Cursul 6 Integrl în complex Fie f : D C o funcţie continuă pe domeniul D C. Ne punem problem existenţei unei primitive lui f, dică unei funcţii olomorfe F : D C stfel încât F = f. În czul funcţiilor rele,

Mai mult

PowerPoint Presentation

PowerPoint Presentation Curs 9 Integrre Numerică Clculul Numeric l Integrlelor cu plicții în Ingineri Electrică Ș.l. Dr. ing. Levente CZUMBIL Lortorul de Cercetre în Metode Numerice Deprtmentul de Electrotehnică, Inginerie Electrică

Mai mult

Microsoft Word - l10.doc

Microsoft Word - l10.doc Metode Numerice - Lucrarea de laborator 0 Lucrarea de laborator nr. 0 I. Scopul lucrării Aproximarea funcţiilor. Polinoame de interpolare. II. Conţinutul lucrării. Polinom de interpolare. Definiţie. Eroarea

Mai mult

D.Rusu, Teoria măsurii şi integrala Lebesgue 11 INTEGRALA LEBESGUE Cursul 10 Observaţia Cum am văzut în Teorema 11.46, orice funcţie integrabilă

D.Rusu, Teoria măsurii şi integrala Lebesgue 11 INTEGRALA LEBESGUE Cursul 10 Observaţia Cum am văzut în Teorema 11.46, orice funcţie integrabilă D.Rusu, Teori măsurii şi integrl Lebesgue 11 INTEGRALA LEBESGUE Cursul 10 Observţi 11.50 Cum m văzut în Teorem 11.46, orice funcţie integrbilă Riemnn e un intervl mărginit [, b] este continuă µ-..t.. Prin

Mai mult

LABORATOR 9 - VECTORI ŞI VALORI PROPRII. INTERPOLAREA FUNCŢIILOR 1. Vectori Şi valori proprii. Metoda rotaţiilor a lui Jacobi Fie A o matrice p¼atrati

LABORATOR 9 - VECTORI ŞI VALORI PROPRII. INTERPOLAREA FUNCŢIILOR 1. Vectori Şi valori proprii. Metoda rotaţiilor a lui Jacobi Fie A o matrice p¼atrati LABORATOR 9 - VECTORI ŞI VALORI PROPRII INTERPOLAREA FUNCŢIILOR Vectori Şi vlori rorii Metod rotţiilor lui Jcobi Fie A o mtrice ¼trtic¼ Un vector x R n se numeşte vector roriu în rort cu A dc¼ x 6= 0 şi

Mai mult

Analiz¼a Matematic¼a - Curs 6 M¼ad¼alina Roxana Buneci

Analiz¼a Matematic¼a - Curs 6 M¼ad¼alina Roxana Buneci Analiz¼a Matematic¼a - Curs 6 M¼ad¼alina Roxana Buneci Cuprins 4 Spaţii topologice (continuare din cursul 5) 3 4.6 Spaţiul R n............................ 3 5 Calcul diferenţial 7 5. Derivatele funcţiilor

Mai mult

Tema 5

Tema 5 Tem 5 Etensini le integrlei Riemnn Modll 5. - Integrle definite, c prmetr. Integrle improprii. Integrle definite, c prmetr Stdil integrlelor definite c prmetr rel este intim legt de reprezentre integrlă

Mai mult

Microsoft Word - fmnl06.doc

Microsoft Word - fmnl06.doc Metode Numerce Lucrre de lbortor r. 6 I. Scopul lucrăr Metode tertve de rezolvre sstemelor lre. II. Coţutul lucrăr. Metode tertve de rezolvre sstemelor lre. Geerltăţ. 2. Metod Jcob. 3. Metod Guss-Sedel.

Mai mult

Model de planificare calendaristică

Model de planificare calendaristică Liceul Greco-Ctolic Timotei Cipriu Avizt. Director, Vicenţiu RUSU. Şef Ctedră, PLANIFICARE CALENDARISTICĂ ANUL ŞCOLAR 04-05 Disciplin MATEMATICĂ, Filieră TEORETICĂ, progrm nr. 35/3.0.006 Cls XI-, profil

Mai mult

Aero-BCD, , Prof. L. Costache & M. Olteanu Notițe de Adrian Manea Seminar 5 Șiruri și serii de funcții. Serii de puteri 1 Șiruri de funcții D

Aero-BCD, , Prof. L. Costache & M. Olteanu Notițe de Adrian Manea Seminar 5 Șiruri și serii de funcții. Serii de puteri 1 Șiruri de funcții D Seminar 5 Șiruri și serii de funcții. Serii de puteri Șiruri de funcții Definiţie.: Fie (f n ) n un șir de funcții, cu fiecare f n : [a, b] R și fie o funcție f : [a, b] R. PC Spunem că șirul (f n ) converge

Mai mult

Algebra: 1. Numere naturale. Operatii cu numere naturale. Ordinea operatiilor. Puteri si reguli de calcul cu puteri. Compararea puterilor. Multimea nu

Algebra: 1. Numere naturale. Operatii cu numere naturale. Ordinea operatiilor. Puteri si reguli de calcul cu puteri. Compararea puterilor. Multimea nu Algebr: 1. Numere turle. Opertii cu umere turle. Ordie opertiilor. Puteri si reguli de clcul cu puteri. Comprre puterilor. Multime umerelor turle este * N 0,1,2,3,...,,... si N N {0} 1,2,3,...,,.... Pe

Mai mult

Calcul diferenţial şi integral (notiţe de curs) Şt. Balint E. Kaslik, L. Tǎnasie, A. Tomoioagă, I. Rodilǎ, N. Bonchiş, S. Mariş Cuprins I Introducere

Calcul diferenţial şi integral (notiţe de curs) Şt. Balint E. Kaslik, L. Tǎnasie, A. Tomoioagă, I. Rodilǎ, N. Bonchiş, S. Mariş Cuprins I Introducere Clcul diferenţil şi integrl (notiţe de curs) Şt. Blint E. Kslik, L. Tǎnsie, A. Tomoiogă, I. Rodilǎ, N. Bonchiş, S. Mriş Cuprins I Introducere 6 1 Noţiunile: mulţime, element l unei mulţimi, prtenenţ l

Mai mult

CONCURSUL NAŢIONAL DE MATEMATICA PANAITOPOL EDIŢIA a X-a, TULCEA, 21 aprilie 2018 Clasa a VII - a 1. Se consideră numerele reale x, y şi z, cel puţin

CONCURSUL NAŢIONAL DE MATEMATICA PANAITOPOL EDIŢIA a X-a, TULCEA, 21 aprilie 2018 Clasa a VII - a 1. Se consideră numerele reale x, y şi z, cel puţin CONCURSUL NAŢIONAL DE MATEMATICA PANAITOPOL EDIŢIA a X-a, TULCEA, 21 aprilie 2018 Clasa a VII - a 1. Se consideră numerele reale x, y şi z, cel puţin două dintre ele fiind diferite. Arătaţi că x y z 0

Mai mult

Curs 10 Aplicaţii ale calculului diferenţial. Puncte de extrem 10.1 Diferenţiale de ordin superior S¼a trecem acum la de nirea diferenţialelor de ordi

Curs 10 Aplicaţii ale calculului diferenţial. Puncte de extrem 10.1 Diferenţiale de ordin superior S¼a trecem acum la de nirea diferenţialelor de ordi Curs 0 Aplicaţii ale calculului diferenţial. Puncte de extrem 0. Diferenţiale de ordin superior S¼a trecem acum la de nirea diferenţialelor de ordin superior. De niţia 0.. Fie n 2; D R k o mulţime deschis¼a

Mai mult

Microsoft Word - MD.05.

Microsoft Word - MD.05. pitolul uvite-cheie serii de puteri, puct regult, puct sigulr, ecuţie idicilă osideră o ecuţie difereţilă de ordi k ( k ) L(,,,,..., ) () Se pote căut soluţi sub for uei serii de puteri î jurul puctului

Mai mult

CLP_UTCN-grila-2012.dvi

CLP_UTCN-grila-2012.dvi Liceul: Numele: Punctaj: Prenumele: Concursul liceelor partenere cu Universitatea Tehnică din Cluj-Napoca Test grilă Ediţia a treia mai 0 Clasa a X-a În casuţa din stânga întrebării se va scrie litera

Mai mult

Probleme rezolvate 1) Să se calculeze limitele următoarelor şiruri: 1 a) x n n = ( n+ 1)( n+ 2 )...( n+ n), n 2 n ( 1) 1 n n b) 2 3 n 5 n... ( 2

Probleme rezolvate 1) Să se calculeze limitele următoarelor şiruri: 1 a) x n n = ( n+ 1)( n+ 2 )...( n+ n), n 2 n ( 1) 1 n n b) 2 3 n 5 n... ( 2 Probleme rezolvate ) Să se calculeze itele următoarelor şiruri: a) x = ( + )( + )...( + ), 3 ( ) b) 3 5... ( x = e + e + + ) e Soluţie ( + )( + )...( + ) a) x = =... + + +. k l x = l +. Folosid coseciţa

Mai mult

Microsoft PowerPoint - curs5-DPT-2010V97 [Compatibility Mode]

Microsoft PowerPoint - curs5-DPT-2010V97 [Compatibility Mode] Diagnoza sistemelor tehnice Curs 5: Metode de detectare a defectelor bazate pe modele de semnal / Metode de detectare a defectelor / Teste statistice de detectare a modificarilor 3/ Testarea caracterului

Mai mult

Microsoft Word - D_ MT1_II_001.doc

Microsoft Word - D_ MT1_II_001.doc ,1 SUBIECTUL II (30p) Varianta 1001 a b 1 Se consideră matricea A = b a, cu a, b şi 0 http://wwwpro-matematicaro a) Să se arate că dacă matricea X M ( ) verifică relaţia AX = XA, atunci există uv,, astfel

Mai mult

Microsoft Word - Analiza12BacRezolvate.doc

Microsoft Word - Analiza12BacRezolvate.doc ANALIZA MATEMATICA D : Fi I u itrvl şi f,f:i R FucŃi F s umşt primitivă lui f dcă: ) F st drivilă; ) F (f(, I Fi I u itrvl şi fucńi f:i R cr dmit primitiv Dcă F, F :I R sut primitiv l fucńii f, tuci F

Mai mult

OBIECTIVE DE REFERINŢĂ ŞI EXEMPLE DE ACTIVITĂŢI DE ÎNVĂŢARE 1. Cunoaşterea şi înţelegerea conceptelor, a terminologiei şi a procedurilor de calcul Obi

OBIECTIVE DE REFERINŢĂ ŞI EXEMPLE DE ACTIVITĂŢI DE ÎNVĂŢARE 1. Cunoaşterea şi înţelegerea conceptelor, a terminologiei şi a procedurilor de calcul Obi OBIECTIVE DE REFERINŢĂ ŞI EXEMPLE DE CTIVITĂŢI DE ÎNVĂŢRE. Cunoştere şi înţelegere conceptelor, terminologiei şi procedurilor de clcul Obiective de referinţă L sfârşitul clsei VII- elevul v fi cpbil..să

Mai mult

TEORIA MĂSURII Liviu C. Florescu Universitatea Al.I.Cuza, Facultatea de Matematică, Bd. Carol I, 11, R Iaşi, ROMANIA, e mail:

TEORIA MĂSURII Liviu C. Florescu Universitatea Al.I.Cuza, Facultatea de Matematică, Bd. Carol I, 11, R Iaşi, ROMANIA, e mail: TEORI MĂSURII Liviu C. Florescu Universitatea l.i.cuza, Facultatea de Matematică, Bd. Carol I, 11, R 700506 Iaşi, ROMNI, e mail: lflo@uaic.ro În mod intenţionat această pagină este lăsată albă! Cuprins

Mai mult

20 SUBIECTE DE EXAMEN - De fapt, în pofida acestor probleme, până la urmă tot vom logaritma, căci aceasta este tehnica naturală în context. Trebuie do

20 SUBIECTE DE EXAMEN - De fapt, în pofida acestor probleme, până la urmă tot vom logaritma, căci aceasta este tehnica naturală în context. Trebuie do SUBIECTE DE EXAMEN - De fapt, în pofida acestor probleme, până la urmă tot vom logaritma, căci aceasta este tehnica naturală în context. Trebuie doar să gestionăm cu precauţie detaliile, aici fiind punctul

Mai mult

Autoevaluare curs MN.doc

Autoevaluare curs MN.doc Anul II, IEI IFR Semestrul I Metode numerice Chestionar de autoevaluare C1 1 Să se scrie o procedură care să calculeze produsul scalar a doi vectori 2 Să se scrie o procedură de înmulţire a matricelor

Mai mult

Copyright c 2001 ONG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Stiintei Examenul de bacalaureat la

Copyright c 2001 ONG TCV Scoala Virtuala a Tanarului Matematician   1 Ministerul Educatiei si Stiintei Examenul de bacalaureat la Copyright c 1 ONG TCV Scoala Virtuala a Tanarului Matematician http://math.ournet.md 1 Ministerul Educatiei si Stiintei Examenul de bacalaureat la matematica, Profilurile: fizica-matematica, economie,

Mai mult

OBIECTIVE DE REFERINŢĂ ŞI EXEMPLE DE ACTIVITĂŢI DE ÎNVĂŢARE 1. Cunoaşterea şi înţelegerea conceptelor, a terminologiei şi a procedurilor de calcul Obi

OBIECTIVE DE REFERINŢĂ ŞI EXEMPLE DE ACTIVITĂŢI DE ÎNVĂŢARE 1. Cunoaşterea şi înţelegerea conceptelor, a terminologiei şi a procedurilor de calcul Obi OBIECTIVE DE REFERINŢĂ ŞI EXEMPLE DE ACTIVITĂŢI DE ÎNVĂŢARE. Cunoştere şi înţelegere conceptelor, terminologiei şi procedurilor de clcul Oiective de referinţă Exemple de ctivităţi de învăţre L sfârşitul

Mai mult

BAC 2007 Pro Didactica Programa M1 2 Rezolvarea variantei 36 versiune finală Redactia Pro Didactica Suportul pe net:

BAC 2007 Pro Didactica Programa M1 2 Rezolvarea variantei 36 versiune finală Redactia Pro Didactica Suportul pe net: BAC 27 Pro Didactica Programa M1 2 Rezolvarea variantei 36 versiune finală Redactia Pro Didactica Suportul pe net: http://www./ CAPITOLUL 1 Varianta 36 1. Subiectul I. (a) Avem 2 ( ) 2+ ( ) 2= 7i = 2 7

Mai mult

Clasa IX 1. O lăcustă face salturi, fiecare salt în linie dreaptă şi de două ori mai lung ca precedentul. Poate vreodată lăcusta să revină în punctul

Clasa IX 1. O lăcustă face salturi, fiecare salt în linie dreaptă şi de două ori mai lung ca precedentul. Poate vreodată lăcusta să revină în punctul Clasa IX. O lăcustă face salturi, fiecare salt în linie dreaptă şi de două ori mai lung ca precedentul. Poate vreodată lăcusta să revină în punctul de plecare iniţial? Soluţie. Răspunsul este negativ.

Mai mult

Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică Gheorghe Asachi Iaşi, 2015 Analiză Matematică Lucian Maticiuc 1 / 29

Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică Gheorghe Asachi Iaşi, 2015 Analiză Matematică Lucian Maticiuc 1 / 29 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică Gheorghe Asachi Iaşi, 2015 Analiză Matematică Lucian Maticiuc 1 / 29 Definiţie. Şiruri mărginite. Şiruri monotone. Subşiruri ale

Mai mult

BAC 2007 Pro Didactica Programa M1 2 Rezolvarea variantei 61 versiune finală Redactia Pro Didactica Suportul pe net:

BAC 2007 Pro Didactica Programa M1 2 Rezolvarea variantei 61 versiune finală Redactia Pro Didactica Suportul pe net: BAC 7 Pro Didactica Programa M Rezolvarea variantei 6 versiune finală Redactia Pro Didactica Suportul pe net: http://www./ CAPITOLUL Varianta 6. Subiectul I. (a) Coordonatele punctelor C şi D satisfac

Mai mult

1

1 APROXIMAREA PROFILULUI TRANSVERSAL AL DRUMURILOR PRIN FUNCŢII MATEMATICE ÎN VEDEREA EVALUARII PARAMETRILOR DE CALITATE AI SUPRAFEŢEI CAROSABILE Prof dr ig Bruj Adri Şef lucr dr ig Dim Mri Asist ig Cătăli

Mai mult

ALGORITMICĂ. Seminar 3: Analiza eficienţei algoritmilor - estimarea timpului de execuţie şi notaţii asimptotice. Problema 1 (L) Să se determine număru

ALGORITMICĂ. Seminar 3: Analiza eficienţei algoritmilor - estimarea timpului de execuţie şi notaţii asimptotice. Problema 1 (L) Să se determine număru ALGORITMICĂ. Seminar 3: Analiza eficienţei algoritmilor - estimarea timpului de execuţie şi notaţii asimptotice. Problema 1 (L) Să se determine numărul de operaţii efectuate de către un algoritm care determină

Mai mult

CONCURSUL NAŢIONAL DE MATEMATICA PANAITOPOL EDIŢIA a X-a, TULCEA, 21 aprilie 2018 Clasa a VII - a Soluţii orientative şi bareme Problema 1. Se conside

CONCURSUL NAŢIONAL DE MATEMATICA PANAITOPOL EDIŢIA a X-a, TULCEA, 21 aprilie 2018 Clasa a VII - a Soluţii orientative şi bareme Problema 1. Se conside CONCURSUL NAŢIONAL DE MATEMATICA PANAITOPOL EDIŢIA a X-a, TULCEA, 1 aprilie 18 Clasa a VII - a Soluţii orientative şi bareme Problema 1. Se consideră numerele reale x, y şi z, cel puţin două dintre ele

Mai mult

Ecuatii si sisteme de ecuatii neliniare 1 Metoda lui Newton Algorithm 1 Metoda lui Newton pentru ecuaţia f(x) = 0. Date de intrare: - Funcţia f - Apro

Ecuatii si sisteme de ecuatii neliniare 1 Metoda lui Newton Algorithm 1 Metoda lui Newton pentru ecuaţia f(x) = 0. Date de intrare: - Funcţia f - Apro Ecuatii si sisteme de ecuatii neliniare Metoda lui Newton Algorithm Metoda lui Newton pentru ecuaţia f(x) = 0. - Funcţia f - Aproximaţia iniţială x - Eroarea admisă ε - Numărul maxim de iteraţii ITMAX

Mai mult

SEMNALE ŞI SISTEME CURSUL 3 SEMNALE ANALOGICE Obiectivele acestui curs: Distribuţii. Funcţii singulare Distribuţii utile în studiul semnalelor. Transf

SEMNALE ŞI SISTEME CURSUL 3 SEMNALE ANALOGICE Obiectivele acestui curs: Distribuţii. Funcţii singulare Distribuţii utile în studiul semnalelor. Transf EMNALE ANALOGICE Obiecivele ceui cur: Diribuţii Funcţii ingulre Diribuţii uile în udiul emnlelor Trnform Fourier Funcţi de denie pecrlă Proprieăţi le rnformelor Fourier direcă şi inveră 3 Diribuţii Funcţii

Mai mult

CONCURSUL DE MATEMATICĂ APLICATĂ "ADOLF HAIMOVICI" ETAPA JUDEȚEANĂ 18 martie 2017 Filiera Tehnologică : profilul Tehnic Clasa a IX -a Problema 1. 2 Se

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI ETAPA JUDEȚEANĂ 18 martie 2017 Filiera Tehnologică : profilul Tehnic Clasa a IX -a Problema 1. 2 Se Clasa a IX -a Se consideră funcţia f : R R, f ( x) x mx 07, unde mr a) Determinaţi valoarea lui m ştiind că f( ), f() şi f () sunt termeni consecutivi ai unei progresii aritmetice b) Dacă f() f(4), să

Mai mult

Cursul 12 (plan de curs) Integrale prime 1 Sisteme diferenţiale autonome. Spaţiul fazelor. Fie Ω R n o mulţime deschisă şi f : Ω R n R n o funcţie de

Cursul 12 (plan de curs) Integrale prime 1 Sisteme diferenţiale autonome. Spaţiul fazelor. Fie Ω R n o mulţime deschisă şi f : Ω R n R n o funcţie de Cursul 12 (plan de curs) Integrale prime 1 Sisteme diferenţiale autonome. Spaţiul fazelor. Fie Ω R n o mulţime deschisă şi f : Ω R n R n o funcţie de clasă C 1. Vom considera sistemul diferenţial x = f(x),

Mai mult

GHEORGHE PROCOPIUC PROBLEME DE ANALIZĂ MATEMATICĂ ŞI ECUAŢII DIFERENŢIALE IAŞI, 2007

GHEORGHE PROCOPIUC PROBLEME DE ANALIZĂ MATEMATICĂ ŞI ECUAŢII DIFERENŢIALE IAŞI, 2007 GHEORGHE PROCOPIUC PROBLEME DE ANALIZĂ MATEMATICĂ ŞI ECUAŢII DIFERENŢIALE IAŞI, 7 Cuprins Elemente de teoria spaţiilor metrice 4 Spaţii metrice 4 Mulţimea numerelor reale 8 Şiruri şi serii 5 Şiruri de

Mai mult

Microsoft Word - LogaritmiBac2009.doc

Microsoft Word - LogaritmiBac2009.doc Logaritmi. EcuaŃii logaritmice Logaritmi DefiniŃie. Fie a R * +, a şi b R * + douã numere reale. Se numeşte logaritm al numãrului real strict pozitiv b exponentul la care trebuie ridicat numãrul a, numit

Mai mult

Cursul 7 Formula integrală a lui Cauchy Am demonstrat în cursul precedent că, dacă D C un domeniu simplu conex şi f : D C o funcţie olomorfă cu f cont

Cursul 7 Formula integrală a lui Cauchy Am demonstrat în cursul precedent că, dacă D C un domeniu simplu conex şi f : D C o funcţie olomorfă cu f cont Cursul 7 Formula integrală a lui Cauchy Am demonstrat în cursul precedent că, dacă D C un domeniu simplu conex şi f : D C o funcţie olomorfă cu f continuă pe D, atunci, pe orice curbă rectificabilă şi

Mai mult

PROGRAMA CONCURSULUI NAŢIONAL

PROGRAMA CONCURSULUI NAŢIONAL ANUL ŞCOLAR 2011-2012 CLASA a IX-a În programa de concurs pentru clasa a IX-a sunt incluse conţinuturile programelor din clasele anterioare şi din etapele anterioare. 1. Mulţimi şi elemente de logică matematică.

Mai mult

DAN LASCU ADRIANA-LIGIA SPORIŞ ANDA OLTEANU PAUL VASILIU MATEMATICĂ. CULEGERE DE PROBLEME TIP GRILĂ PENTRU ADMITEREA ÎN ACADEMIA NAVALĂ MIRCEA CEL BĂT

DAN LASCU ADRIANA-LIGIA SPORIŞ ANDA OLTEANU PAUL VASILIU MATEMATICĂ. CULEGERE DE PROBLEME TIP GRILĂ PENTRU ADMITEREA ÎN ACADEMIA NAVALĂ MIRCEA CEL BĂT DAN LASCU ADRIANA-LIGIA SPORIŞ ANDA OLTEANU PAUL VASILIU MATEMATICĂ. CULEGERE DE PROBLEME TIP GRILĂ PENTRU ADMITEREA ÎN ACADEMIA NAVALĂ MIRCEA CEL BĂTRÂN Colecţia Matematică DAN LASCU ADRIANA-LIGIA SPORIŞ

Mai mult

Microsoft Word - Probleme-PS.doc

Microsoft Word - Probleme-PS.doc PROBLEME PROPUSE PENTRU EXAMENUL LA PRELUCRAREA SEMNALELOR a) Să se demonstreze că pentru o secvenńă pară x[ n] x[ n] este adevărată egalitatea X( z) X( z) b) să se arate că polii (zerourile) acestei transformate

Mai mult

Analiză 2 Notițe de seminar Adrian Manea Curs: A. Niță 11 mai 2019

Analiză 2 Notițe de seminar Adrian Manea Curs: A. Niță 11 mai 2019 Analiză 2 Notițe de seminar Adrian Manea Curs: A. Niță 11 mai 2019 Cuprins 1 Ecuații și sisteme diferențiale 3 1.1 Ecuații liniare de ordinul n cu coeficienți constanți.............. 3 1.2 Metoda eliminării

Mai mult

FIŞA NR

FIŞA NR Prof CORNELI MESTECN Prof RRODIC TRIŞCĂ CLUJ-NPOC 009 CUPRINS FIŞ NR NUMERE RELE Pg 6 FIŞ NR ECUŢII Pg 8 FIŞ NR FUNCŢII TEORIE Pg 0 4 FIŞ NR 4 FUNCŢII EXERCIŢII Pg FIŞ NR ECUŢII IRŢIONLE, ECUŢII EXPONENŢILE

Mai mult

Declaratie Morari Viorel 2018

Declaratie Morari Viorel 2018 DECLARAȚIE DE AVERE ȘI INTERESE PERSONALE I. INFORMAȚII GENERALE DESPRE SUBIECTUL DECLARĂRII 1., prenumele, ptronimicul și numărul intificre: Morri Viorel () 2. Domiciliul şi numărul telefon: * 3. Funcți

Mai mult

MOMENTUL REZISTENT INTAMPINAT DE CAPUL DE FORAJ, LA FORAREA ORIZONTALA CU BURGHIU INTR-UN PAMANT NECOEZIV

MOMENTUL REZISTENT INTAMPINAT DE CAPUL DE FORAJ, LA FORAREA ORIZONTALA CU BURGHIU INTR-UN PAMANT NECOEZIV OENTUL REZISTENT INTAPINAT DE CAPUL DE FORAJ, LA FORAREA ORIZONTALA INTR-UN PAANT NECOEZIV Şoimuşn Vlentin, prof.univ.r.ing. Fcultte e Utilj Tehnologic UTCB vlentinsoimusn@yhoo.com Abstrct This pper presents

Mai mult

Prelegerea 4 În această prelegere vom învăţa despre: Algebre booleene; Funcţii booleene; Mintermi şi cuburi n - dimensionale. 4.1 Definirea algebrelor

Prelegerea 4 În această prelegere vom învăţa despre: Algebre booleene; Funcţii booleene; Mintermi şi cuburi n - dimensionale. 4.1 Definirea algebrelor Prelegerea 4 În această prelegere vom învăţa despre: Algebre booleene; Funcţii booleene; Mintermi şi cuburi n - dimensionale. 4.1 Definirea algebrelor booleene Definiţia 4.1 Se numeşte algebră Boole (booleană)

Mai mult

Cursul 8 Funcţii analitice Vom studia acum comportarea şirurilor şi seriilor de funcţii olomorfe, cu scopul de a dezvălui o proprietate esenţială a ac

Cursul 8 Funcţii analitice Vom studia acum comportarea şirurilor şi seriilor de funcţii olomorfe, cu scopul de a dezvălui o proprietate esenţială a ac Cursul 8 Funcţii analitice Vom studia acum comportarea şirurilor şi seriilor de funcţii olomorfe, cu scopul de a dezvălui o proprietate esenţială a acestor funcţii: analiticitatea. Ştim deja că, spre deosebire

Mai mult

C:/Users/Lenovo/Dropbox/activitate matematica/cursuri/MS ETTI /msetti.dvi

C:/Users/Lenovo/Dropbox/activitate matematica/cursuri/MS ETTI /msetti.dvi urs 4 Integrale curbilinii 4.1 Drumuri şi curbe Definiţie 4.1. O funcţie continuă γ : [a,b] R m se numeşte drum plan dacă m = 2 sau drum în spaţiu dacă m = 3. Punctul γ(a) se numeşte originea drumului,

Mai mult

Laborator 3 - Simulare. Metode de tip Monte Carlo. I. Estimarea ariilor şi a volumelor RStudio. Nu uitaţi să va setaţi directorul de lucru: Session Se

Laborator 3 - Simulare. Metode de tip Monte Carlo. I. Estimarea ariilor şi a volumelor RStudio. Nu uitaţi să va setaţi directorul de lucru: Session Se Laborator 3 - Simulare. Metode de tip Monte Carlo. I. Estimarea ariilor şi a volumelor RStudio. Nu uitaţi să va setaţi directorul de lucru: Session Set Working Directory Choose Directory. Exerciţiu rezolvat.

Mai mult

PowerPoint Presentation

PowerPoint Presentation Calculul Aproximativ al Derivatelor Funcțiilor umerice Ș.l. Dr. ing. Levente CZUMBIL E-mail: Levente.Czumbil@ethm.utcluj.ro WebPage: http://users.utcluj.ro/~czumbil Determinarea distribuţiei de sarcină

Mai mult

¬¬¬¬¬¬¬¬¬¬¬¬

¬¬¬¬¬¬¬¬¬¬¬¬ la care participi are două părți, desemnate prin literele A și B. Pentru fiecare dintre acestea vei folosi numai materialele care se află în plicurile siilate A, respectiv B, de pe masa ta de lucru. Îți

Mai mult

UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB 6 aprilie 2019 Proba scrisă la MATEMATICĂ NOTĂ IM

UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB 6 aprilie 2019 Proba scrisă la MATEMATICĂ NOTĂ IM UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB 6 aprilie 219 Proba scrisă la MATEMATICĂ NOTĂ IMPORTANTĂ: 1) Problemele de tip grilă din Partea A pot

Mai mult

Limbaje de Programare Curs 6 – Functii de intrare-iesire

Limbaje de Programare   Curs 6 – Functii de intrare-iesire Limbaje de Programare Curs 6 Funcţii de intrare-ieşire Dr. Casandra Holotescu Universitatea Politehnica Timişoara Ce discutăm azi... 1 Citire formatată 2 Citirea şirurilor de caractere 3 Citirea unor linii

Mai mult

Teoreme cu nume 1. Problema (Năstăsescu IX, p 147, propoziţia 5) Formula lui Chasles Pentru orice puncte M, N şi P avem MN + NP = MP.

Teoreme cu nume 1. Problema (Năstăsescu IX, p 147, propoziţia 5) Formula lui Chasles Pentru orice puncte M, N şi P avem MN + NP = MP. Teoreme cu nume Problema (Năstăsescu IX, p 47, propoziţia 5) Formula lui hasles Pentru orice puncte M, N şi P avem MN + NP = MP 2 Problema (Năstăsescu IX, p 68, teoremă) Vectorul de poziţie al centrului

Mai mult

Facultatea de Matematică Anul II Master, Geometrie Algebrică Mulţimi algebrice ireductibile. Dimensiune 1 Mulţimi ireductibile Propoziţia 1.1. Fie X u

Facultatea de Matematică Anul II Master, Geometrie Algebrică Mulţimi algebrice ireductibile. Dimensiune 1 Mulţimi ireductibile Propoziţia 1.1. Fie X u Facultatea de Matematică Anul II Master, Geometrie Algebrică Mulţimi algebrice ireductibile. Dimensiune 1 Mulţimi ireductibile Propoziţia 1.1. Fie X un spaţiu topologic. Următoarele afirma-ţii sunt echivalente:

Mai mult

User reference guide

User reference guide Ghid de referință pentru utiliztor romnă Cuprins Cuprins 1 Despre cest document 2 2 Termenii de utilizre 2 3 Descriere sistemului 2 3.1 Despre serviciul... 2 3.2 Despre utilizre fișierelor cookie... 3

Mai mult

Subiectul I (20 puncte) CONCURSUL ȘCOLAR NAȚIONAL DE GEOGRAFIE,,TERRA ETAPA NAȚIONALĂ 18 mai 2019 CLASA a V-a Citește fiecare cerință și analizează cu

Subiectul I (20 puncte) CONCURSUL ȘCOLAR NAȚIONAL DE GEOGRAFIE,,TERRA ETAPA NAȚIONALĂ 18 mai 2019 CLASA a V-a Citește fiecare cerință și analizează cu Suiectul I (20 puncte) CONCURSUL ȘCOLAR NAȚIONAL DE GEOGRAFIE,,TERRA ETAPA NAȚIONALĂ 18 mi 2019 CLASA V- Citește fiecre cerință și nlizeză cu tenție desenele su imginile de mi jos. Selecteză cerculețul

Mai mult

Microsoft Word - DPF170 quick guide - RO

Microsoft Word - DPF170 quick guide - RO Introducere Vă mulţumim că ţi chiziţiont Rm Foto Digitlă Prestigio 170, un dispozitiv digitl de fişre fotogrfiilor. Aţi făcut o legere excelentă şi sperăm să vă bucurţi de tote crcteristicile sle interesnte.

Mai mult

Microsoft Word - final7.doc

Microsoft Word - final7.doc Metode uerice î igieri electrică Cuvât-îite Lucrre iligvă roâă-frceză Metode uerice î igieri electrică Aplicţii î C++ şi Turo Pscl prezită o viziue proprie utorilor supr teoriei şi plicării etodelor uerice

Mai mult

Cursul 12 Şiruri recurente în planul complex Vom studia, în continuare, comportarea în raport cu data iniţială a şirurilor definite prin relaţii de re

Cursul 12 Şiruri recurente în planul complex Vom studia, în continuare, comportarea în raport cu data iniţială a şirurilor definite prin relaţii de re Cursul 12 Şiruri recurente în planul complex Vom studia, în continuare, comportarea în raport cu data iniţială a şirurilor definite prin relaţii de recurenţă de forma z n+1 = f(z n ), n = 0, 1, 2,...,

Mai mult

PROIECT DIDACTIC

PROIECT   DIDACTIC Plan de lecție Informații generale Obiectul: Matematică Clasa: a VII - a Durata: 50 min Mijloace TIC: calculatorul profesorului cu videoproiector,calculatoare pentru elevi Tema lecției: Aria triunghiului

Mai mult

Modul de Calcul Manual Metode dendrom ÎN TEREN Înălţimi METODA Norme Ediţia 2000 Indicativ Structura Arboretelor Diametru Nr. de arbori la care se măs

Modul de Calcul Manual Metode dendrom ÎN TEREN Înălţimi METODA Norme Ediţia 2000 Indicativ Structura Arboretelor Diametru Nr. de arbori la care se măs oul e Clcul nul etoe enrom ÎN TEREN Înălţimi ETODA Norme Eiţi 000 Inictiv Structur Arboretelor Dimetru Nr. e rbori l cre se măsoră - H- Dim. e referinţă pentru măsurre - H-. Tbelelor e cubj 5.. E+P sp.

Mai mult

Programul Operaţional Sectorial pentru Dezvoltarea Resurselor Umane 2007 – 2013

Programul Operaţional Sectorial pentru Dezvoltarea Resurselor Umane 2007 – 2013 GRUPUL DE ACŢIUNE LOCALĂ Județul Bistriț-Năsăud, orș BECLEAN, Zon de Agrement Fig, FN, Cod poștl 425100, Tel: 037-1408616, Fx: 037-1377056, e-mil: secretrit@gltinutulhiducilor.ro Progrmul Nţionl de Dezvoltre

Mai mult

0 Probleme pentru pregătirea examenului final la Analiză Matematică 1. Să se calculeze următoarele integrale improprii: dx a) x 4 ; b) x 3 dx dx

0 Probleme pentru pregătirea examenului final la Analiză Matematică 1. Să se calculeze următoarele integrale improprii: dx a) x 4 ; b) x 3 dx dx Probleme pentru pregătirea examenului final la Analiză Matematică. ă se calculeze următoarele integrale improprii: dx a) + x ; b) x dx dx; c) + x x + x ) ; dx x d) x + x ) ; e) dx; f) x p e xq dx, p >,

Mai mult

www. didactic.ro Aplicaţii ale trigonometriei în geometrie Trecem în revistă următoarele rezultate importante: 1) Teorema sinusurilor: Teorema cosinus

www. didactic.ro Aplicaţii ale trigonometriei în geometrie Trecem în revistă următoarele rezultate importante: 1) Teorema sinusurilor: Teorema cosinus Aplicaţii ale trigonometriei în geometrie Trecem în revistă următoarele rezultate importante: 1) Teorema sinusurilor: Teorema cosinusurilor: Fiind dat triunghiul ABC, vom folosi următoarele notaţii:,,

Mai mult

SUBPROGRAME

SUBPROGRAME SUBPROGRAME Un subprogram este un ansamblu ce poate conţine tipuri de date, variabile şi instrucţiuni destinate unei anumite prelucrări (calcule, citiri, scrieri). Subprogramul poate fi executat doar dacă

Mai mult

Clustere şi impurităţi în sisteme complexe

Clustere şi impurităţi în sisteme complexe C: Soluţii numerice ale ecuaţiei Schrödinger independentă de timp. Metoda Tirului BIBLIOGRAFIE Ion. I. Cotaescu. Curs de Mecanica Cuantică, Tipografia UVT 990 Epperson J, An introduction to numerical methods

Mai mult

Microsoft Word - CATALOG UNIVERSITATI.doc

Microsoft Word - CATALOG UNIVERSITATI.doc CATALOGUL SURSELOR DE FINANŢARE UNIVERSITĂŢILOR A g e n ţ i p e n t r u D e z v o l t r e R e g i o n l ă C e n t r u A L B A I U L I A, P i ţ C o n s i l i u l E u r o p e i, n r. 3 2 D, T e l : 0 0 4

Mai mult

Grafuri neorinetate Aplicatii 1 Care este numărul maxim de componente conexe pe care le poate avea un graf neorientat cu 20 noduri şi 12 muchii? a. 6

Grafuri neorinetate Aplicatii 1 Care este numărul maxim de componente conexe pe care le poate avea un graf neorientat cu 20 noduri şi 12 muchii? a. 6 Grafuri neorinetate Aplicatii 1 Care este numărul maxim de componente conexe pe care le poate avea un graf neorientat cu 20 noduri şi 12 muchii? a. 6 b. 12 c. 10 d. 15 2 Câte grafuri neorientate, distincte,

Mai mult

ALGORITMII ŞI REPREZENTAREA LOR Noţiunea de algoritm Noţiunea de algoritm este foarte veche. Ea a fost introdusă în secolele VIII-IX de către Abu Ja f

ALGORITMII ŞI REPREZENTAREA LOR Noţiunea de algoritm Noţiunea de algoritm este foarte veche. Ea a fost introdusă în secolele VIII-IX de către Abu Ja f ALGORITMII ŞI REPREZENTAREA LOR Noţiunea de algoritm Noţiunea de algoritm este foarte veche. Ea a fost introdusă în secolele VIII-IX de către Abu Ja far Mohammed ibn Musâ al- Khowârizmî în cartea sa intitulată

Mai mult

Aproximarea functiilor prin metoda celor mai mici patrate

Aproximarea functiilor prin metoda celor mai mici patrate Aproximarea funcţiilor prin metoda celor mai mici pătrate Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică Suport didactic pentru disciplina Metode numerice, 2017-2018

Mai mult

8

8 9.5 Fluxul unui vector printr-o suprafaţă deschisă-continuare Observaţie: Dacă vrem să calculăm fluxul vectorului a = P x y z i + Q x y z j + R x y z k (,, ) (,, ) (,, ) prin suprafaţa definită de ecuaţia

Mai mult

1. Găsiți k numerele cele mai apropiate într-un şir nesortat Dându-se un şir nesortat și două numere x și k, găsiți k cele mai apropiate valori de x.

1. Găsiți k numerele cele mai apropiate într-un şir nesortat Dându-se un şir nesortat și două numere x și k, găsiți k cele mai apropiate valori de x. 1. Găsiți k numerele cele mai apropiate într-un şir nesortat Dându-se un şir nesortat și două numere x și k, găsiți k cele mai apropiate valori de x. Date de intrare: arr [] = {10, 2, 14, 4, 7, 6}, x =

Mai mult

Săptămâna 1 Partea I Nr. item Rezultate a) {1; 2; 3; 4; 5; 8} {2} {2; 3; 5; 6; 7} 55 [AE b) {2; 4} C {1; 3; 4; 5; 7} 55 AD c) {1; 3; 5} {2;

Săptămâna 1 Partea I Nr. item Rezultate a) {1; 2; 3; 4; 5; 8} {2} {2; 3; 5; 6; 7} 55 [AE b) {2; 4} C {1; 3; 4; 5; 7} 55 AD c) {1; 3; 5} {2; Săptămân ) {; ; ; 4; ; 8} {} {; ; ; 6; 7} [AE b) {; 4} C {; ; 4; ; 7} AD c) {; ; } {; } Cls VII- Mtemtică Răspunsuri {; 4} AF. ) A {0,,,, 4, }, B {, 4,, 6, 7}. b) A Ç B {, 4, }; A È B {0,,,, 4,, 6, 7};

Mai mult

D.Rusu, Teoria măsurii şi integrala Lebesgue 6 MĂSURA LEBESGUE Cursul 5 Teorema 6.26 Există submulţimi ale lui R care nu sunt măsurabile Lebesgue. Dem

D.Rusu, Teoria măsurii şi integrala Lebesgue 6 MĂSURA LEBESGUE Cursul 5 Teorema 6.26 Există submulţimi ale lui R care nu sunt măsurabile Lebesgue. Dem D.Rusu, Teoria măsurii şi integrala Lebesgue 6 MĂSURA LEBESGUE Cursul 5 Teorema 6.26 Există submulţimi ale lui R care nu sunt măsurabile Lebesgue. Demonstraţie. Fie mulţimea A = [0, ], pe care definim

Mai mult

iul13_mart26_tropar_arhanghel_Troparele hramului.qxd.qxd

iul13_mart26_tropar_arhanghel_Troparele hramului.qxd.qxd LA UN ARHANGHEL 13 iulie, 26 martie Tropar, glas 4 T Rt s după Nanu Virgil Ioan @m20! 11!0010!! 1a!1 M ai ma re vo ie vo du le al oş ti lor ce reşti te ru O'!!0'!!A b

Mai mult

ROMANIA

ROMANIA CATALOGULSURSELORDEFINANARE PROGRAMEDESTINATEUNIVERSITILOR Ageni pentru Dezvoltre Regionl Centru ALBA IULIA, Str. Decebl, nr. 2, Tel: 0040-258-8866, Fx: 0040-258-8863 E-mil: office@drcentru.ro, Web: www.drcentru.ro,www.regio.drcentru.ro

Mai mult

MD.09. Teoria stabilităţii 1

MD.09. Teoria stabilităţii 1 MD.09. Teoria stabilităţii 1 Capitolul MD.09. Teoria stabilităţii Cuvinte cheie Soluţie stabilă spre +, instabilă si asimptotic stabilă, punct de echilibru, soluţie staţionară, stabilitatea soluţiei banale,

Mai mult

Calcul Numeric

Calcul Numeric Calcul Numeric Cursul 4 2019 Anca Ignat Metode numerice de rezolvarea sistemelor liniare Fie matricea nesingulară A nn şi b n. Rezolvarea sistemului de ecuații liniare Ax=b se poate face folosind regula

Mai mult

Operation manuals

Operation manuals Dikin Altherm Sistem split de tempertură săzută EHBH04+08DA EHBX04+08DA EHVH04S18DA EHVH04S23DA EHVH08S18DA EHVH08S23DA EHVX04S18DA EHVX04S23DA EHVX08S18DA EHVX08S23DA romnă Cuprins Cuprins 1 Despre est

Mai mult

RecMat dvi

RecMat dvi Probleme propuse 1 P355. Găsiţi trei numere consecutive în şirul numerelor de la 1 la 30 care să aibă suma 30. (Clasa pregătitoare) Mariana Manoli, elevă, Iaşi P356. Colorează figura geometrică care nu

Mai mult

BR_409995

BR_409995 RAEI Prte II- DESCRIEREA ACTIVITĂŢILOR DE ÎMBUNĂTĂŢIRE A CALITĂŢII REALIZATE Obiective Termene Responsbilitţi Indictori Nr. Activitţi Tipul crt ctivitte 1 relizre 1 6 Activitte l Îmbuntţire octombrie Echip

Mai mult

Matematici Speciale - Ingineria Sistemelor Seminar 1 Probleme rezolvate 1. Studiaţi convergenţa integralelor improprii: Z 1 p Z 3 2x 2 a) I

Matematici Speciale - Ingineria Sistemelor Seminar 1 Probleme rezolvate 1. Studiaţi convergenţa integralelor improprii: Z 1 p Z 3 2x 2 a) I Matematici Seciale - Ingineria Sistemelor 5-6 Seminar Probleme rezolvate. Studiaţi convergenţa integralelor imrorii: a) I d, b) J d, c) K + ;5 entru a d şi b c k. Soluţie: a) Integrala I este divergent¼a,

Mai mult

E_c_matematica_M_mate-info_2017_var_02_LRO

E_c_matematica_M_mate-info_2017_var_02_LRO Matmatică M_mat-info Toat subictl sunt obligatorii. S acordă punct din oficiu. Timpul d lucru fctiv st d or. 5p. S considră numărul compl z + i. Arătați că z z zz 9 5p. Dtrminați numărul ral m, știind

Mai mult

Slide 1

Slide 1 ELECTROTEHNCĂ ET An - SA CRS 8 Conf.dr.ing.ec. Claudia PĂCRAR e-mail: Claudia.Pacurar@ethm.utcluj.ro . ntroducere în teoria circuitelor electrice. Puteri în regim armonic 3. Caracterizarea în complex a

Mai mult

Noțiuni matematice de bază

Noțiuni matematice de bază Sistem cartezian definitie. Coordonate carteziene Sistem cartezian definiţie Un sistem cartezian de coordonate (coordonatele carteziene) reprezintă un sistem de coordonate plane ce permit determinarea

Mai mult

I

I METODA VECTORIALĂ ÎN GEOMETRIE prof. Andrei - Octavian Dobre Această metodă poate fi descrisă după cum urmează: Fiind dată o problemă de geometrie, după explicitarea şi reprezentarea grafică a configuraţiei

Mai mult

Programul Operaţional Sectorial pentru Dezvoltarea Resurselor Umane 2007 – 2013

Programul Operaţional Sectorial pentru Dezvoltarea Resurselor Umane 2007 – 2013 GRUPUL DE ACŢIUNE LOCALĂ Județul Bistriț-Năsăud, orș BECLEAN, Zon de Agrement Fig, FN, Cod poștl 425100, Tel: 037-1408616, Fx: 037-1377056, e-mil: secretrit@gltinutulhiducilor.ro Progrmul Nţionl de Dezvoltre

Mai mult

RecMat dvi

RecMat dvi Soluţiile problemelor propuse în nr. /6 Clasele primare P355. Găsiţi trei numere consecutive în şirul numerelor de la la 3 care să aibă suma 3. (Clasa pregătitoare) Mariana Manoli, elevă, Iaşi Soluţie.

Mai mult

Microsoft Word - Lab1a.doc

Microsoft Word - Lab1a.doc Sisteme de numeraţie şi coduri numerice 1.1. Sisteme de numeraţie 1.2. Conversii generale între sisteme de numeraţie 1.3. Reprezentarea numerelor binare negative 1.4. Coduri numerice 1.5. Aplicaţii In

Mai mult

curs 9 v3 [Compatibility Mode]

curs 9 v3 [Compatibility Mode] Investeşte în oameni! FONDUL SOCIAL EUROPEAN Programul Operaţional Sectorial pentru Dezvoltarea Resurselor Umane 007 03 Aa prioritară nr. Educaţia şi formarea profesională în sprijinul creşterii economice

Mai mult