Subiecte_funar_2006.doc
|
|
- Bartolomeu Popa
- 3 ani în urmă
- Vzualizari:
Transcriere
1 Clasa a VIII-a A. 1. Exista numere n Z astfel încât n si n+ sa fie patrate perfecte? (Gheorghe Stoica) A. 2. Se considera A N o multime cu 7 elemente si k N*. Aratati ca ecuatia 4x 2 4ax+b 2 +10k = 0, unde a,b A, a? b, poate avea doua radacini egale. (Gheorghe Stoica) A. 3. Fie ABCD patrat, AA (ABC), astfel încât AA = AB = a si M mijlocul lui [AB]. Calculati distanta de la M la dreapta A C. A. 4. Fie A si B doua puncte în planul α, O un punct exterior lui a, iar M si N mijloacele segmentelor [AO] si [BO]. Doua drepte paralele duse prin M si N intersecteaza planul α în P si Q. Notam AP BQ = {R}. a) Aratati ca [MN] = [PQ]. b) Aratati ca, daca toate triunghiurile determinate de punctele A, B, O, R sunt echilaterale, atunci MNPQ este patrat. B. Aflati cifra a? 0 astfel încât suma S a = a a a a este divizibila cu 10.
2 Clasa a VII-a A. 1. Exista numere întregi n astfel încât n si n+ sa fie patrate perfecte? (Gheorghe Stoica) A. 2. Gasiti numerele întregi a, a,..., a astfel încât: a + a a + = a + a (Gh. Stoica) a A. 3. Fie punctele C si D pe segmentul [AB]. Construim triunghiurile MAC si NBD astfel încât AC = BD, MAC NBD, perimetrul MAC este egal cu perimetrul NBD si [MN] AB?. a) Aratati ca MAC NBD. b) Fie [MN] AB = {P}. Definiti si demonstrati o conditie necesara si suficienta în care P poate fi mijlocul segmentului [XY], unde X,Y {A,B,C,D}. AE FD A. 4. Fie patratul ABCD, E AB si F AD astfel încât =. Fie EN BC, EB AF N CD si FM CD, M BC, EN FM = {S}, MD BN = {T}. Aratati ca ST MN. B. Aratati ca exista numere naturale care încep si se termina cu, divizibile cu (Gheorghe Stoica)
3 Clasa a VI-a A. 1. a) Sa se cerceteze daca numarul A = este divizibil cu 18. b) Un numar natural este format astfel: , dar nu neaparat în aceasta ordine luate cifrele. Poate fi acest numar un patrat perfect? A. 2. Opt piese de domino stau pe masa asa cum se vede si în figura. Ce numar are partea acoperita a piesei de domino, daca numerele de pe piese pot forma un patrat magic de 4 4 (suma numerelor de pe fiecare linie, fiecare coloana, fiecare diagonala este aceeasi)? A. 3. Fie punctele coliniare A 1, A 2, A 3,, A, în aceasta ordine. a) Cercetati valoarea de adevar a propozitiei: daca A 1 A 2 = A 2 A 3 = A 3 A 4 = = A 2005 A, atunci A 1 A = 2 (A 1 A 2 +2 A 2 A 3 +3 A 3 A A 2005 A ). b) Daca A 1 A 2 = A 2 A 3 = A 3 A 4 = = A 2005 A, determinati M (A 2 A 2005 ) astfel încât A 1 M MA 2005 = A 2 M MA. A. 4. Un dreptunghi se împarte printr-o dreapta în doua poligoane. Unul din poligoane se împarte printr-o dreapta în alte doua parti. Dupa aceea unul dintre cele 3 poligoane obtinute se va împarti în doua parti s.a.m.d. Operatia de împartire a poligoanelor se repeta de 668 de ori. Dupa aceasta operatie observam ca poligoanele obtinute au în total vârfuri (vârfurile fiecarui poligon se socotesc separat). Este adevarat? B. Aratati ca exista numere naturale care încep si se termina cu, divizibile cu (Gheorghe Stoica)
4 Clasa a V-a A. 1. La un concurs în rezolvari de probleme se acorda 5 puncte pentru o problema bine rezolvata si se scad 3 puncte pentru o problema rezolvata gresit. Un elev a redactat rezolvarile a 10 probleme si a obtinut 34 puncte. Sa se afle câte probleme a rezolvat corect si câte a gresit. A. 2. La un concurs de tir au participat concurenti. Primul concurent a obtinut 80 de puncte, al doilea 60 de puncte, al treilea media aritmetica a numarului punctelor primilor doi, al patrulea media aritmetica de la primii trei concurenti si în general fiecare dintre participantii urmatori, media aritmetica a punctelor obtinute de concurentii precedenti. Câte puncte a obtinut ultimul concurent? A. 3. Numarul reprezentând suma a doua numere naturale consecutive s-a rasturnat (rasturnatul lui ab este ba ). Ca rezultat s-a obtinut numarul mai mare. Ce fel de numere s-au adunat? A. 4. Pe o masa sunt asezate 2007 figuri de joc de doua culori dintre care 1003 negre si 1004 albe copii stau la masa si joaca jocul urmator: la început fiecare îsi ia de pe masa câte doua piese care sunt amestecate si nu se vad la culoare. Cel care începe jocul va lua piesa ramasa. Daca toate cele trei piese sunt de aceeasi culoare, a câstigat, daca nu, adauga celui din dreapta piesa care nu-i este utila s.a.m.d. Care este numarul minim de cedari pe care trebuie sa-l faca primul jucator pâna sa câstige cineva? B. Doi maestri de sah dupa ce s-au întors la hotel, unde partic ipau la turneul anual de sah, au observat ca în fiecare an numarul de participanti creste într-un anume mod. Astfel, dupa trei optimi din turneu se jucasera tot atâtea partide ca si anul trecut pe tot turneul. Daca lucrurile vor continua tot asa, peste câtiva ani vor juca deja 30 de oameni. Câti sahisti au jucat în acel turneu? Argumentati raspunsul.
5 Clasa a IV-a A. 1. Determinati un numar de 13 ori mai mare decât suma cifrelor care formeaza numarul. A) 130; B) 117; C) 104; D) 91; E) alt raspuns. A. 2. Pe masa se afla 3 cartoane cu cifre. Se formeaza toate numerele din 3 cifre posibile cu ele, iar suma acestora este Care au fost cifrele? A) 1, 3, 4; B) 7, 8, 9; C) 5, 7, 8; D) 4, 8, 9; E) alt raspuns. A. 3. Mowgli si-a rugat prietenii - maimute sa-i aduca alune. Maimutele i-au cules fiecare o cantitate egala de alune lui Mowgli. Pe drum ele s-au certat si fiecare maimuta a aruncat câte o aluna. În total la Mowgli au ajuns 33 de alune. Câte alune au strâns maimutele (se stie ca fiecare maimuta a adus cel putin o aluna)? A) 44; B) 66; C) 36; D) 55; E) alt raspuns. A. 4. Într-un cos sunt 20 de ciuperci albe, galbene si gri. Câte ciuperci albe sunt, daca gri sunt de 9 ori mai multe decât galbene? A) 10 albe; B) 2 albe; C) 18 albe; D) 9 albe; E) alt raspuns. A. 5. Gasiti un numar de cinci cifre, cu proprietatea ca fiecare cifra a numarului trebuie sa fie mai mare decât suma cifrelor din dreapta lui. A) 85210; B) 84310; C) 74210; D) 84210; E) alt raspuns. A. 6. Gasiti cel mai mic numar natural care se termina cu 56 si suma cifrelor lui sa fie tot 56. A) ; B) ; C) ; D) ; E) alt raspuns. A. 7. Un numar de 3 cifre începe cu 7. Din acest numar s-a obtinut un alt numar de 3 cifre, mutând cifra 7 la sfârsitul numarului. Numarul obtinut a fost cu 117 mai mic ca primul. Despre ce numar este vorba? A) 730; B) 764; C) 704; D) 791; E) alt raspuns. A. 8. Doua numere se numesc numere oglinda daca dintr-un numar se obtine un altul prin mutarea cifrelor componente în ordine inversa. De exemplu, 123 cu 321. Produsul a doua asemenea numere este egal cu Care sunt ele? A) 265 si 562; B) 865 si 568; C) 165 si 561; D) 465 si 564; E) alt raspuns. A. 9. Prin înmultirea cu patru a unui numar format din 4 cifre ale carui cifre sunt cu toate diferite, obtinem un numar care se scrie cu aceleasi cifre, dar în ordine inversa. Care este acest numar? A) 2178; B) 3276; C) 1235; D) 4291; E) alt raspuns. B. Fat Frumos a început sa lupte cu zmeul cu trei capete si trei cozi. "Iata o sabie magica", i-a spus baba-iapa. "Cu o lovitura poti taia zmeului ori un cap, ori doua capete, ori o coada, ori doua cozi. Tine minte: i-ai taiat un cap - creste altul, i-ai taiat o coada - îi cresc doua, tai doua cozi - creste un cap, tai doua capete - nu mai creste nimic la loc." Care este numarul minim de lovituri cu care Fat Frumos poate sa taie toate capetele si toate cozile zmeului? Argumentati raspunsul.
6 Clasa a III-a A. 1. De câte ori apare cifra 7 în toate numerele de la 36 la 77? a) 12; b) 9; c) 15; d) 20; e) alt raspuns. A. 2. Pe o corabie erau 5 pirati. Fiecare pirat a luat 6 prizonieri. Câti oameni sunt pe corabie? a) 30; b) 9; c) 35; d) 11; e) alt raspuns. A. 3. Suma numerelor naturale de doua cifre distincte formate numai cu cifrele 3 si 5 este: a) 35; b) 70; c) 88; d) 45; e) alt raspuns. A. 4. Câte numere mai mici ca 100 au suma cifrelor 5? a) 6; b) 7; c) 5; d) 25; e) alt raspuns. A. 5. Mihai ia 6 pastile la interval de 2 ore. La câte ore dupa ce a luat-o pe prima va lua ultima pastila? a) 10 ore; b) 12 ore; c) 16 ore; d) 17 ore; e) alt raspuns. A. 6. În timp ce Mihaela manânca 4 bomboane, Maria manânca 6 bomboane. Fetele au mâncat împreuna 20 bomboane. Câte bomboane a mâncat Mihaela? a) 12; b) 10; c) 8; d) 16; e) alt raspuns. A. 7. Învatatoarea a format grupe cu toti elevii clasei grupe complete de câte 4 elevi. Mircea a observat ca se afla în grupa 5, daca se numara din fata, si în grupa 2, daca se numara din spate. Câti elevi sunt în total? a) 30; b) 24; c) 28; d) 20; e) alt raspuns. A. 8. Papagalul meu are 16 zile, iar pestisorul meu 12 zile. Peste 8 zile, diferenta de vârsta dintre ei va fi de a) 4 zile; b) 8 zile; c) 5 zile; d)12 zile; e) alt raspuns. A. 9. Nasul lui Pinocchio este cu 8 cm mai lung decât un sfert din el. Ce lungime are? a) 16 cm; b) 12 cm; c) 8 cm; d) 10 cm; e) alt raspuns. B. Fat-Frumos a început sa lupte cu zmeul cu trei capete si trei cozi. "Iata o sabie magica", i-a spus baba-iapa. "Cu o lovitura poti taia zmeului ori un cap, ori doua capete, ori o coada, ori doua cozi. Tine minte: i-ai taiat un cap - creste altul, i-ai taiat o coada - îi cresc doua, tai doua cozi - creste un cap, tai doua capete - nu mai creste nimic la loc." Care este numarul minim de lovituri cu care Fat Frumos poate sa taie toate capetele si toate cozile zmeului? Argumentati raspunsul.
CONCURSUL DE MATEMATICǍ ISTEŢII D ARBORE EDIŢIA a X-a - 20 aprilie 2019 Clasa a IV-a BAREM DE CORECTARE ŞI NOTARE SUBIECTUL I Se punctează doar rezult
CONCURSUL DE MATEMATICǍ ISTEŢII D ARBORE EDIŢIA a X-a - 0 aprilie 09 Clasa a IV-a BAREM DE CORECTARE ŞI NOTARE Se punctează doar rezultatul: pentru fiecare răspuns se acordă fie uncte, fie 0 puncte Nu
Microsoft Word - D_ MT1_II_001.doc
,1 SUBIECTUL II (30p) Varianta 1001 a b 1 Se consideră matricea A = b a, cu a, b şi 0 http://wwwpro-matematicaro a) Să se arate că dacă matricea X M ( ) verifică relaţia AX = XA, atunci există uv,, astfel
OLM_2009_barem.pdf
Ministerul Educaţiei, Cercetării şi Inovării Societatea de Ştiinţe Matematice din Romania Olimpiada Naţională de Matematică Etapa finală, Neptun Mangalia, 13 aprilie 2009 CLASA A VII-a, SOLUŢII ŞI BAREMURI
Microsoft Word - Concursul SFERA.doc
CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ SFERA EDIŢIA a II-a BĂILEŞTI, 1 martie 005 CLASA a IV-a Pentru întrebările 1-5 scrieţi pe lucrare litera corespunzătoare răspunsului corect 1. Care este numărul care
Inspectoratul Şcolar Judeţean Suceava Şcoala Gimnazială Luca Arbure CONCURSUL DE MATEMATICǍ ISTEŢII D ARBORE EDIŢIA a VIII a 29 APRILIE 2017 Clasa a I
Clasa a IV a 1. Rezultatul calculului : 8 + [40 + 8 (00 : 5 7 : )] 0 este A) 0 B) C) 4 D) 8. Valoarea lui x din egalitatea [( x + 60 : ) + 4] 5 = 1985este : A) 1 B) 5 C) 1 D) 10. Suma dintre jumatatea
Gheorghe IUREA Adrian ZANOSCHI algebră geometrie clasa a VII-a ediţia a V-a, revizuită mate 2000 standard EDITURA PARALELA 45 Matematică. Clasa a VII-
Gheorghe IUREA Adrian ZANOSCHI algebră geometrie clasa a VII-a ediţia a V-a, revizuită mate 2000 standard 3 Algebră Capitolul I. MULŢIMEA NUMERELOR RAŢIONALE Identificarea caracteristicilor numerelor raţionale
CONCURSUL DE MATEMATICĂ APLICATĂ "ADOLF HAIMOVICI" ETAPA JUDEȚEANĂ 18 martie 2017 Filiera Tehnologică : profilul Tehnic Clasa a IX -a Problema 1. 2 Se
Clasa a IX -a Se consideră funcţia f : R R, f ( x) x mx 07, unde mr a) Determinaţi valoarea lui m ştiind că f( ), f() şi f () sunt termeni consecutivi ai unei progresii aritmetice b) Dacă f() f(4), să
I
METODA VECTORIALĂ ÎN GEOMETRIE prof. Andrei - Octavian Dobre Această metodă poate fi descrisă după cum urmează: Fiind dată o problemă de geometrie, după explicitarea şi reprezentarea grafică a configuraţiei
Matematica - Clasa teste pentru grupele de excelenta
2. Dacă abc cd = 262, calculaţi ab (c + d). 3. Calculaţi suma numerelor abc, dacă a < b şi c = a + b + 2. 4. Calculaţi suma dintre cea mai mică sumă S = a + b + c + d şi cea mai mare sumă S, dacă a 1 =
Clasa IX 1. O lăcustă face salturi, fiecare salt în linie dreaptă şi de două ori mai lung ca precedentul. Poate vreodată lăcusta să revină în punctul
Clasa IX. O lăcustă face salturi, fiecare salt în linie dreaptă şi de două ori mai lung ca precedentul. Poate vreodată lăcusta să revină în punctul de plecare iniţial? Soluţie. Răspunsul este negativ.
joined_document_27.pdf
INSPECTORATUL ȘCOLAR JUDEȚEAN GORJ OLIMPIADA NAȚIONALĂ DE MATEMATICĂ ETAPA LOCALĂ, CLASA a V - a FEBRUARIE 014 a). Pe un stadion intră la un meci un număr de persoane după următoarea regulă: în primul
Teoreme cu nume 1. Problema (Năstăsescu IX, p 147, propoziţia 5) Formula lui Chasles Pentru orice puncte M, N şi P avem MN + NP = MP.
Teoreme cu nume Problema (Năstăsescu IX, p 47, propoziţia 5) Formula lui hasles Pentru orice puncte M, N şi P avem MN + NP = MP 2 Problema (Năstăsescu IX, p 68, teoremă) Vectorul de poziţie al centrului
Microsoft Word - Programa finala olimpiadei matematica 2007 gimnaziu.doc
ROMÂNIA MINISTERUL EDUCAŢIEI ŞI CERCETĂRII DIRECŢIA GENERALĂ ÎNVĂŢĂMÂNT PREUNIVERSITAR SERVICIUL NAŢIONAL DE EVALUARE ŞI EXAMINARE PROGRAMA OLIMPIADEI DE MATEMATICĂ CLASELE V XII AN ŞCOLAR 006 / 007 Pentru
DAN LASCU ADRIANA-LIGIA SPORIŞ ANDA OLTEANU PAUL VASILIU MATEMATICĂ. CULEGERE DE PROBLEME TIP GRILĂ PENTRU ADMITEREA ÎN ACADEMIA NAVALĂ MIRCEA CEL BĂT
DAN LASCU ADRIANA-LIGIA SPORIŞ ANDA OLTEANU PAUL VASILIU MATEMATICĂ. CULEGERE DE PROBLEME TIP GRILĂ PENTRU ADMITEREA ÎN ACADEMIA NAVALĂ MIRCEA CEL BĂTRÂN Colecţia Matematică DAN LASCU ADRIANA-LIGIA SPORIŞ
Universitatea Politehnica din Bucureşti 2019 Disciplina: Geometrie şi Trigonometrie G1 * Varianta A 1. Ştiind cos x = 3 2, atunci sin2 x
1 5 6 7 Universitatea Politehnica din Bucureşti 019 Disciplina: Geometrie şi Trigonometrie G1 * Varianta A 1 Ştiind cos x atunci sin x este: (6 pct a 1 ; b 1 ; c 1 ; d ; e 1 8 ; f Soluţie Folosind prima
CERCURI REMARCABILE ASOCIATE UNUI TRIUNGHI CERCURI EXÎNSCRISE Natura vorbeşte în limbajul matematicii: literele acestei limbi sunt cercuri, tri
CERCURI REMARCABILE ASOCIATE UNUI TRIUNGHI 19 3. CERCURI EXÎNSCRISE Natura vorbeşte în limbajul matematicii: literele acestei limbi sunt cercuri, triunghiuri şi alte guri geometrice. Galileo Galilei 3
Copyright c 2001 ONG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Stiintei Examenul de bacalaureat la
Copyright c 1 ONG TCV Scoala Virtuala a Tanarului Matematician http://math.ournet.md 1 Ministerul Educatiei si Stiintei Examenul de bacalaureat la matematica, Profilurile: fizica-matematica, economie,
Performanta in matematica de gimnaziu si liceu-program de pregatire al elevilor olimpici MULTIMI. OPERATII CU MULTIMI Partea I+II Cls. a V-a
Performanta in matematica de gimnaziu si liceu-program de pregatire al elevilor olimpici MULTIMI. OPERATII CU MULTIMI Partea I+II Cls. a V-a 6.02.2016 si 13.02.2016 Material intocmit de prof. BAJAN MARIANA
TEST DE PROMOVARE ÎN CLASELE DE EXCELENȚĂ Clasa a V-a BAREM SUBIECTUL I a) Determinați numărul natural a din egalitatea: 315 :
TEST DE PROMOVARE ÎN CLASELE DE EXCELENȚĂ Clasa a V-a 29.09.2018 BAREM SUBIECTUL I a) Determinați numărul natural a din egalitatea: 315 : 7 9 4 22 5 204 : 2 2 a 16 : 4 43 b) Se consideră șirul următor
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB 6 aprilie 2019 Proba scrisă la MATEMATICĂ NOTĂ IM
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB 6 aprilie 219 Proba scrisă la MATEMATICĂ NOTĂ IMPORTANTĂ: 1) Problemele de tip grilă din Partea A pot
1. a. Să se scrie un algoritm care să afişeze toate numerele de patru cifre care au cifra sutelor egală cu o valoare dată k, şi cifra zecilor cu 2 mai
1. a. Să se scrie un algoritm care să afişeze toate numerele de patru cifre care au cifra sutelor egală cu o valoare dată k, şi cifra zecilor cu 2 mai mare decât cifra sutelor. b. Se consideră algoritmul
Matematica VI
There are no translations available. Datorita unor probleme tehnice, site-ul nu poate fi vizionat cu Internet Explorer 8, partea de teste (apare pagina alba). Pentru navigare, va recomandam Chrome, Mozilla,
Microsoft Word - V_4_Inmultirea_nr_nat.doc
3 Înmulţirea numerelor naturale De acum, pentru înmulţire vom folosi semnul în loc de Ex În loc de 32 9 vom scrie 32 9 Dacă a şi b sunt două numere naturale, prin produsul lor vom înţelege a b Ex a) Produsul
clasa I Se recomandă citirea enunţurilor de către învăţător. 1. Continuă numărarea şi află câţi morcovi a mâncat iepuraşul. 6, 7, 8, 9,. A) 3 B) 10 C)
clasa I Se recomandă citirea enunţurilor de către învăţător.. Continuă numărarea şi află câţi morcovi a mâncat iepuraşul. 6, 7, 8, 9,. A) B) 0 C) D) 9 E). Vecinul mai mic al numărului 70 este: A) 60 B)
Microsoft Word - Matematika_kozep_irasbeli_javitasi_0911_roman.doc
Matematika román nyelven középszint 0911 ÉRETTSÉGI VIZSGA 011. május. MATEMATIKA ROMÁN NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Indicaţii
Microsoft Word - Programa_Evaluare_Nationala_2011_Matematica.doc
C E N T R U L NAłIONAL DE EVALUARE ŞI E X A M I N A R E PROGRAMA PENTRU DISCIPLINA MATEMATICĂ EVALUAREA NAłIONALĂ PENTRU ELEVII CLASEI A VIII A Pagina 1 din 5 PROGRAMA PENTRU DISCIPLINA MATEMATICĂ I. STATUTUL
MergedFile
PROIECT DIDACTIC Clasa a VII-a Matematică Proiect didactic realizat de profesor Tatiana Predoană, Fundația Noi Orizonturi, în cadrul programului - pilot Digitaliada, revizuit de Monica Popovici, profesor
Matematika román nyelven középszint Javítási-értékelési útmutató 1813 ÉRETTSÉGI VIZSGA május 7. MATEMATIKA ROMÁN NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VI
Matematika román nyelven középszint 83 ÉRETTSÉGI VIZSGA 09. május 7. MATEMATIKA ROMÁN NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Informaţii utile
Concursul de Matematică Upper.School ediția 2019 Etapa III - Clasa a 7-a Lista de probleme PROBLEMA 1 / 4 punctaj: 7 Aflați numerele prime p, q, r car
Concursul de Matematică Upper.School ediția 2019 Etapa III - Clasa a 7-a Lista de probleme PROBLEMA 1 / 4 punctaj: 7 Aflați numerele prime p, q, r care satisfac simultan următoarele condiții: qr p 4 1
Coordonate baricentrice Considerăm în plan un triunghi ABC şi un punct Q în interiorul său, fixat arbitrar. Notăm σ c = aria ( QAB) σ a = aria ( QBC),
Coordonate baricentrice Considerăm în plan un triunghi ABC şi un punct Q în interiorul său, fixat arbitrar Notăm σ c = aria ( QAB) = aria ( QBC), = aria ( QCA) şi σ = aria ( ABC), astfel încât σ = + +
1 Concursul de matematic¼a NICOLAE COCULESCU EDIŢIA a VIII-a SLATINA 29 noiembrie 2012 Clasa a III-a 1. Numere, numere. a) Cinci prieteni se î
1 Concursul de matematic¼a NICOLAE COCULESCU 2011-12 EDIŢIA a VIII-a SLATINA 29 noiembrie 2012 Clasa a III-a 1. Numere, numere. a) Cinci prieteni se întâlnesc. Ei se salut¼a, ecare dând mâna cu ecare,
recmat dvi
Concursul de matematică Florica T.Câmpan Etapa judeţeană, 5-6 mai 2005 Notă. Toate subiectele sunt obligatorii. Timp de lucru: cl. a IV-a 90 de minute, cl. V-VIII 2 ore. ClasaaIV-a 1. Să seafledouă numere
ARTUR BĂLĂUCĂ ARITMETICĂ Teme pentru centre de excelență MODELE DE PROBLEME REZOLVATE DE PROBLEME SEMNIFICATIVE PENTRU OLIMPIADE, CONCURS
ARTUR BĂLĂUCĂ ARITMETICĂ Teme pentru centre de excelență + 0 MODELE DE PROBLEME REZOLVATE + 1130 DE PROBLEME SEMNIFICATIVE PENTRU OLIMPIADE, CONCURSURI ŞI CENTRE DE EXCELENŢĂ Clasa a V-a Ediţia a X-a EDITURA
MergedFile
PROIECT DIDACTIC Clasa a VII-a Matematică Proiect didactic realizat în cadrul programului - pilot Digitaliada, revizuit de Simona Roșu, profesor Digitaliada Textul și ilustrațiile din acest document începând
Secţiunea 5-6 avansaţi PROBLEMA 1 Concurs online de informatică Categoria PROGRAMARE 100 puncte NR Un număr natural nenul V care se plictisea singur,
PROBLEMA 1 NR Un număr natural nenul V care se plictisea singur, și-a căutat în prima zi cel mai mare divizor al său mai mic decât el și l-a scăzut din valoarea sa. Numărul rămas, plictisit și el, și-a
COMENTARII FAZA JUDEŢEANĂ, 9 MARTIE 2013 Abstract. Personal comments on some of the problems presented at the District Round of the National Mathemati
COMENTARII FAZA JUDEŢEANĂ, 9 MARTIE 2013 Abstract. Personal comments on some of the problems presented at the District Round of the National Mathematics Olympiad 2013. Data: 12 martie 2013. Autor: Dan
Slide 1
SCTR -SZOKE ENIKO - Curs 4 continuare curs 3 3. Componentele hard ale unui sistem de calcul in timp real 3.1 Unitatea centrala de calcul 3.1.1 Moduri de adresare 3.1.2 Clase de arhitecturi ale unitatii
Subiectul 1
Subiectul 1 În fişierul Numere.txt pe prima linie este memorat un număr natural n (n
Microsoft Word - a5+s1-5.doc
Unitatea şcolară: Şcoala cu cls. I-VIII Sf. Vineri Profesor: Gh. CRACIUN Disciplina: Matematică Clasa a V-a / 4 ore pe săpt./ Anul şcolar 007-008 PROIECTAREA DIDACTICĂ ANUALĂ Număr săptămâni: 35 Număr
Microsoft Word - SUBIECTE FAZA LOCALA FEBRUARIE 2007
CLASA a - V a 1 007 1. a) ArătaŃi că umărul A= 1+ + + +... + este divizibil cu 15. b) La u cocurs de matematică au participat elevi di clasele a V-a A, a V-a B şi a V-a C. 7 de elevi u sut di clasa a V-a
INDICAŢII ŞI RĂSPUNSURI III.5.2. PROBLEME RECAPITULATIVE PROPUSE SPRE REZOLVARE 2 ALGEBRĂ 1. x 16 y 8y x 16 x 4 x 16 y 4 x x 4 Condiţiile radica
INDICAŢII ŞI RĂSPUNSURI III.5.. PROBLEME RECAPITULATIVE PROPUSE SPRE REZOLVARE ALGEBRĂ 1. x 16 y 8y x 16 x x 16 x 16 16 x Condiţiile radicalilor: 16 0 16 x 16 ecuaţia devine: 16 x 0 16 y y0; 8 S x y 16
MergedFile
PROIECT DIDACTIC Clasa a VII-a Matematică Proiect didactic realizat de Ana-Cristina Blanariu-Șugar, profesor Digitaliada, revizuit de Ioan Popa, profesor Digitaliada Textul și ilustrațiile din acest document
CENTRUL NAŢIONAL DE EVALUARE ŞI EXAMINARE EVALUAREA COMPETENŢELOR FUNDAMENTALE LA FINALUL CLASEI a II-a 2014 Test 1 MATEMATICĂ Judeţul / sectorul... L
CENTRUL NAŢIONAL DE EVALUARE ŞI EXAMINARE EVALUAREA COMPETENŢELOR FUNDAMENTALE LA FINALUL CLASEI a II-a 2014 Test 1 MATEMATICĂ Judeţul / sectorul... Localitatea... Şcoala... Numele şi prenumele elevei
Microsoft Word - Matematika_kozep_irasbeli_jav_utmut0513V28_roman.doc
Matematika román nyelven középszint 0513 ÉRETTSÉGI VIZSGA 005. május 8. MATEMATIKA ROMÁN NYELVEN MATEMATICĂ KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA EXAMEN DE BACALAUREAT NIVEL MEDIU Az írásbeli vizsga időtartama:
PROGRAMA CONCURSULUI NAŢIONAL
ANUL ŞCOLAR 2011-2012 CLASA a IX-a În programa de concurs pentru clasa a IX-a sunt incluse conţinuturile programelor din clasele anterioare şi din etapele anterioare. 1. Mulţimi şi elemente de logică matematică.
CONCURSUL NAŢIONAL DE MATEMATICA PANAITOPOL EDIŢIA a X-a, TULCEA, 21 aprilie 2018 Clasa a VII - a 1. Se consideră numerele reale x, y şi z, cel puţin
CONCURSUL NAŢIONAL DE MATEMATICA PANAITOPOL EDIŢIA a X-a, TULCEA, 21 aprilie 2018 Clasa a VII - a 1. Se consideră numerele reale x, y şi z, cel puţin două dintre ele fiind diferite. Arătaţi că x y z 0
Pachete de lecţii disponibile pentru platforma AeL
Pachete de lecţii disponibile pentru platforma AeL -disciplina Matematică- Nr. crt Nume pachet clasa Nr. momente Nr.Recomandat de ore 1 Corpuri geometrice V 6 1 2 Fracţii V 14 5 3 Măsurarea lungimilor.
subiecte clasa7
Concursul interjudeńean de matematică Gheorghe Vrănceanu, Bacău-007 Clasa a VII-a Subiectul I Să se demonstreze că există un punct M în interiorul unui triunghi ABC astfel încât triunghiurile ABM, BCM
BAC 2007 Pro Didactica Programa M1 2 Rezolvarea variantei 61 versiune finală Redactia Pro Didactica Suportul pe net:
BAC 7 Pro Didactica Programa M Rezolvarea variantei 6 versiune finală Redactia Pro Didactica Suportul pe net: http://www./ CAPITOLUL Varianta 6. Subiectul I. (a) Coordonatele punctelor C şi D satisfac
Noțiuni matematice de bază
Sistem cartezian definitie. Coordonate carteziene Sistem cartezian definiţie Un sistem cartezian de coordonate (coordonatele carteziene) reprezintă un sistem de coordonate plane ce permit determinarea
Microsoft Word - Evaluare_initiala_Matematica_Cls07_Model_Test.doc
Precizări metodologice cu privire la testul de evaluare inińială la disciplina MATEMATICĂ, din anul şcolar 011-01 În anul şcolar 011-01, modelul propus pentru testare inińială la disciplina Matematică
Concurs online de informatică Categoria PROGRAMARE Secţiunea 5-6 avansaţi PROBLEMA puncte DANS De 1 Iunie - Ziua Copilului se organizează un spe
PROBLEMA 1 DANS De 1 Iunie - Ziua Copilului se organizează un spectacol de dans cu şi pentru copii. Acesta este programat să se desfăşoare în intervalul orar 10.30-12.00. În spectacol se înscriu n trupe
Republica Serbia MINISTERUL ÎNVĂŢĂMÂNTULUI, ŞTIINŢEI ŞI DEZVOLTĂRII TEHNOLOGICE INSTITUTUL PENTRU EVALUAREA CALITĂŢII ÎNVĂŢĂMÂNTULUI ŞI EDUCAŢIEI INST
Republica Serbia MINISTERUL ÎNVĂŢĂMÂNTULUI, ŞTIINŢEI ŞI DEZVOLTĂRII TEHNOLOGICE INSTITUTUL PENTRU EVALUAREA CALITĂŢII ÎNVĂŢĂMÂNTULUI ŞI EDUCAŢIEI INSTITUTUL PEDAGOGIC AL VOIVODINEI EXAMENUL FINAL ÎN ÎNVĂŢĂMÂNTUL
Concurs online de informatică Categoria PROGRAMARE PROBLEMA 1 Secţiunea 7-8 avansaţi 100 puncte DEMOCRATIE Arpsod are în curtea sa N copaci foarte băt
PROBLEMA 1 DEMOCRATIE Arpsod are în curtea sa N copaci foarte bătrâni, așezați în linie și numerotați de la 1 la N. Fiecare copac are o înălțime cunoscută, Hi. Există riscul ca la un vânt mai puternic
OBIECTIVE DE REFERINŢĂ ŞI EXEMPLE DE ACTIVITĂŢI DE ÎNVAŢARE 1. Cunoaşterea şi înţelegerea conceptelor, a terminologiei şi a procedurilor de calcul Obi
OBIECTIVE DE REFERINŢĂ ŞI EXEMPLE DE CTIVITĂŢI DE ÎNVŢRE. Cunoaşterea şi înţelegerea conceptelor, a terminologiei şi a procedurilor de calcul Obiective de referinţă Exemple de activităţi de învăţare La
Matematica Clasa 5 Culegere De Exercitii Si Probleme
uprins Teste de evaluare inițială... 7 4 I. Numere naturale. Numere naturale... 9. Scrierea şi citirea numerelor naturale... 9.2 xa numerelor naturale. ompararea şi ordonarea numerelor naturale... 4.3
BARAJ NR. 1 JUNIORI FRANŢA ianuarie Fie x şi y două numere întregi astfel încât 5x + 6y şi 6x + 5y să fie pătrate perfecte. Arătaţi că
BARAJ NR. 1 JUNIORI FRANŢA 019 9 ianuarie 019 1. Fie x şi y două numere întregi astfel încât 5x + 6y şi 6x + 5y să fie pătrate perfecte. Arătaţi că x şi y sunt divizibili cu 11.. Fie Γ un cerc de centru
PROIECT DIDACTIC PROFESOR: CIUREA ALINA MIHAELA DATA: ŞCOALA GIMNAZIALĂ NR. 1 ORBEASCA DE SUS CLASA a III a EFECTIVUL: 18 elevi: 8 fete, 10
PRIECT DIDACTIC PRFESR: CIUREA ALINA MIHAELA DATA: 27.02.2017 ŞCALA GIMNAZIALĂ NR. 1 RBEASCA DE SUS CLASA a III a EFECTIVUL: 18 elevi: 8 fete, 10 băieţi LC DE DESFĂŞURARE: sală de sport. MATERIALE : mingi
Elemente de aritmetica
Elemente de aritmetică Anul II Februarie 2017 Divizibilitate în Z Definiţie Fie a, b Z. Spunem că a divide b (scriem a b) dacă există c Z astfel încât b = ac. In acest caz spunem că a este un divizor al
RecMat dvi
Conice şi cubice în probleme elementare de loc geometric Ştefan DOMINTE 1 Abstract. In this Note, a number of simple problems are presented to support the idea that conic and cubic curves can frequently
Microsoft Word - Rezolvarea Test nr. 11.doc
Testul nr. 11 Problema 1 (30 puncte = 10 puncte + 10 puncte + 10 puncte) a) Să se calculeze ( 42 : 2 + 23 ) :11+ 2 5 16. b) Să se determine cifrele a și b din egalitatea { a b} 2 + 42 : 2 + 23 :11+ 2 5
SSC-Impartire
Adunarea Înmulțirea Numere și operații în virgulă mobilă 1 Împărțirea cu refacerea restului parțial Împărțirea fără refacerea restului parțial 2 Primul operand: deîmpărțit (X) Al doilea operand: împărțitor
Analiz¼a Matematic¼a - Curs 6 M¼ad¼alina Roxana Buneci
Analiz¼a Matematic¼a - Curs 6 M¼ad¼alina Roxana Buneci Cuprins 4 Spaţii topologice (continuare din cursul 5) 3 4.6 Spaţiul R n............................ 3 5 Calcul diferenţial 7 5. Derivatele funcţiilor
Secţiunea 5-6 începători Concurs online de informatică Categoria PROGRAMARE PROBLEMA puncte PERIODIC Se citește un număr natural nenul N. Se ump
PROBLEMA 1 PERIODIC Se citește un număr natural nenul N. Se umple, pe linii, partea de sub diagonală, inclusiv aceasta, a unui tabel pătratic de dimensiune L cu secvențe consecutive de numere : 1, 2,,
Secţiunea 9-10 avansaţi Concurs online de informatică Categoria PROGRAMARE PROBLEMA 1 TEXT 100 puncte Un text este format din una sau mai multe propoz
PROBLEMA TEXT 00 puncte Un text este format din una sau mai multe propoziții separate pe linii. O propoziție este formată din două sau mai multe cuvinte separate prin câte un spațiu. Fiecare cuvânt este
Secţiunea 7-8 începători Concurs online de informatică Categoria PROGRAMARE PROBLEMA 1 ID 100 puncte Calculatoarele trebuie să se recunoască în rețeau
PROBLEMA ID 00 puncte Calculatoarele trebuie să se recunoască în rețeaua de Internet printr-un ID. În prezent, există metode de identificare a ID-ului folosite la scară globală: IPv4 și IPv6. Adresele
Lecții de pregă,re la informa,că Admitere 2019 Tema: Discutarea problemelor date la ul,mele sesiuni de admitere Bogdan Alexe
Lecții de pregă,re la informa,că Admitere 2019 Tema: Discutarea problemelor date la ul,mele sesiuni de admitere Bogdan Alexe bogdan.alexe@fmi.unibuc.ro Cuprinsul lecției de azi Enunțuri și rezolvări pentru
Calcul Numeric
Calcul Numeric Cursul 4 2019 Anca Ignat Metode numerice de rezolvarea sistemelor liniare Fie matricea nesingulară A nn şi b n. Rezolvarea sistemului de ecuații liniare Ax=b se poate face folosind regula
Concursul interjudețean de matematică PRO-PERFORMANȚA Ediția a III-a Barem clasa a V-a 1. i) AAA, AAB, ABA, ABB, BAA, BAB, BBA, BBB...1p 2.
Concursul interjudețean de matematică PRO-PERFORMANȚA 2017-2018 Ediția a III-a Barem clasa a V-a 1. i) AAA, AAB, ABA, ABB, BAA, BAB, BBA, BBB...1p 2. Sunt 8 siruri...1p ii) 5 2 = 32 de siruri...1p 100
1
Contents 1 Automate finite... 2 1.1 Probleme cu AF... 2 1.2 Structuri de date pentru automate finite... 4 2 Gramatici si limbaje; gram. indep. de context... 5 2.1 Limbaje... 5 2.2 Gramatici si limbaje...
fIŞE DE LUCRU
FIŞE DE LUCRU MICROSOFT OFFICE EXCEL FORMULE ŞI FUNCŢII EXCEL Obiective Aplicarea operaţiilor elementare şi a conceptelor de bază ale aplicaţiei Excel Utilizarea opţiunilor de formatare şi gestionare a
Microsoft Word - i.doc
ANEXA B - 2015 Norme si recomandari pentru constructia de roll-cage Pentru asigurarea securitatii echipajelor in concursurile de offroad, etape ale CN, in conformitate cu prezentul Regulament, la inscrierea
Clasele primare Probleme propuse 1 P.164. Scrie vecinii vecinului comun al numerelor 16 şi 18. (Clasa I ) Diana Tănăsoaie, elevă, Iaşi P.165. După ce
Clasele primare Probleme propuse 1 P.164. Scrie vecinii vecinului comun al numerelor 16 şi 18. (Clasa I ) Diana Tănăsoaie, elevă, Iaşi P.165. După ce dau celor doi fraţi mai mari câte două banane, mănânc
1. Teorema lui Ceva Ene Mihai+Radu Vlad+Budacu Vlad
1. Teorema lui Ceva Ene Mihai+Radu Vlad+Budacu Vlad 2. Teorema lui Menelaus Ciocan Cristian+Cioară Alexandru+Răileanu Daniel 3. Teorema lui Pitagora Paraipan Rareș+Postelnicu Marius+Anghel Mircea
Microsoft Word - EN_IV_2019_Matematica_Test_2.doc
EVALUARE NAȚIONALĂ LA FINALUL CLASEI a IV-a 2 019 MATEMATICĂ Test 2 Județul/sectorul... Localitatea... Şcoala... Numele şi prenumele elevei / elevului...... Clasa a IV-a... Băiat Fată EN IV 2019 Pagina
RecMat dvi
Probleme propuse 1 P355. Găsiţi trei numere consecutive în şirul numerelor de la 1 la 30 care să aibă suma 30. (Clasa pregătitoare) Mariana Manoli, elevă, Iaşi P356. Colorează figura geometrică care nu
Diapositive 1
Tablouri Operatii pe tablouri bidimensionale Lectii de pregatire pentru Admitere 09 / 03 / 2019 1 Cuprins Operatii pe tablouri bidimensionale 0. Tablouri unidimensionale scurta recapitulare 1.Tablouri
Școala: Clasa a V-a Nr. ore pe săptămână: 4 Profesor: MATEMATICĂ Clasa a V-a Aviz director PLANIFICARE CALENDARISTICĂ ORIENTATIVĂ Nr. crt. Unitatea de
Școala: Clasa a V-a ore pe săptămână: 4 Profesor: MATEMATICĂ Clasa a V-a Aviz director PLANIFICARE CALENDARISTICĂ ORIENTATIVĂ de SEMESTRUL I. Recapitulare, iniţială. Numere - reprezentare comparare, estimare
Microsoft Word - EN_IV_2019_Matematica_Test_1.doc
EVALUARE NAȚIONALĂ LA FINALUL CLASEI a IV-a 2 019 MATEMATICĂ Test 1 Județul/sectorul... Localitatea... Şcoala... Numele şi prenumele elevei / elevului...... Clasa a IV-a... Băiat Fată EN IV 2019 Pagina
c o l e c i a EDITURA PARALELA 45
c o l e c i a Autorii aduc mulumiri speciale Societii de tiine Matematice din România pentru sprijinul acordat. Redactare: Ramona Rossall Tehnoredactare: Iuliana Ene Pregtire de tipar: Marius Badea Design
PROGRAMA CONCURSUL MICII CAMPIONI I. COMPETENȚE SPECIFICE ȘI EXEMPLE DE ACTIVITĂȚI DE ÎNVAȚARE 1.1. Explicarea unor modele / regularităţi, pent
PROGRAMA CONCURSUL MICII CAMPIONI - 2019 I. COMPETENȚE SPECIFICE ȘI EXEMPLE DE ACTIVITĂȚI DE ÎNVAȚARE 1.1. Explicarea unor modele / regularităţi, pentru crearea de raţionamente proprii identificarea unor
Microsoft Word - Ol - M.doc
Olimpiada Liceelor istoric Iniţiativa de a oferi tinerilor liceeni posibilitatea de a-şi dezvolta abilităţile şi aptitudinile la un nivel superior, în afara şcolii, aparţine primarului municipiului Slatina,
Algebra si Geometri pentru Computer Science
Natura este scrisă în limbaj matematic. Galileo Galilei 5 Aplicatii liniare Grafica vectoriala In grafica pe calculator, grafica vectoriala este un procedeu prin care imaginile sunt construite cu ajutorul
E_c_matematica_M_mate-info_2017_var_02_LRO
Matmatică M_mat-info Toat subictl sunt obligatorii. S acordă punct din oficiu. Timpul d lucru fctiv st d or. 5p. S considră numărul compl z + i. Arătați că z z zz 9 5p. Dtrminați numărul ral m, știind
Grafuri neorinetate Aplicatii 1 Care este numărul maxim de componente conexe pe care le poate avea un graf neorientat cu 20 noduri şi 12 muchii? a. 6
Grafuri neorinetate Aplicatii 1 Care este numărul maxim de componente conexe pe care le poate avea un graf neorientat cu 20 noduri şi 12 muchii? a. 6 b. 12 c. 10 d. 15 2 Câte grafuri neorientate, distincte,
Operatorii in C Expresii Operatori aritmetici Operatori de asignare Operatori de incrementare si decrementare Operatori relationali Operatori logici O
Operatorii in C Expresii Operatori aritmetici Operatori de asignare Operatori de incrementare si decrementare Operatori relationali Operatori logici Operatii pe biti Operatorul conditional Operatori Logici
CONCURSUL NAŢIONAL DE MATEMATICA PANAITOPOL EDIŢIA a X-a, TULCEA, 21 aprilie 2018 Clasa a VII - a Soluţii orientative şi bareme Problema 1. Se conside
CONCURSUL NAŢIONAL DE MATEMATICA PANAITOPOL EDIŢIA a X-a, TULCEA, 1 aprilie 18 Clasa a VII - a Soluţii orientative şi bareme Problema 1. Se consideră numerele reale x, y şi z, cel puţin două dintre ele
ENVI_2018_matematica_si_stiinte_Test_1_Caietul_elevului_Limba_romana
EVALUAREA NAŢIONALĂ LA FINALUL CLASEI a VI-a Anul școlar 2017-2018 Matematică şi Ştiinţe ale naturii TEST 1 Judeţul/sectorul... Localitatea... Unitatea de învățământ... Numele şi prenumele elevei/elevului......
C:/Users/Lenovo/Dropbox/activitate matematica/cursuri/MS ETTI /msetti.dvi
Curs 1 Noţiuni de teoria câmpului 1.1 Vectori şi operaţii cu vectori 1.1.1 Scalari şi vectori Definiţie 1.1. Un număr real λ R se va numi scalar. O pereche de numere reale (a 1,a ) R se va numi vector
Secţiunea Concurs online de informatică Categoria PROGRAMARE PROBLEMA 1 PIEPTBICEPS 100 puncte Mihai este un bodybuilder cunoscut în Romania. El
PROBLEMA 1 PIEPTBICEPS 1 puncte Mihai este un bodybuilder cunoscut în Romania. El este rugat de diverse persoane să le corecteze antrenamentul din acea zi. Un antrenament este format dintr-o serie de exerciţii
GRUPA: mare EDUCATOARE: Taras Claudia TEMA ANUALA: Cu ce şi cum exprimăm ceea ce simţim? TEMA PROIECTULUI: În lumea basmelor SUBTEMA: Harnic, cinstit
GRUPA: mare EDUCATOARE: Taras Claudia TEMA ANUALA: Cu ce şi cum exprimăm ceea ce simţim? TEMA PROIECTULUI: În lumea basmelor SUBTEMA: Harnic, cinstit şi bun TEMA ACTIVITĂŢII: Fata babei şi fata moşneagului
PENTRU TINE ȘI COPILUL TĂU Jocurile copilăriei 5 activități în aer liber Oferit de: Te așteptăm la:
PENTRU TINE ȘI COPILUL TĂU Jocurile copilăriei 5 activități în aer liber Oferit de: Sezonul cald a sosit, iar noi am pregătit o listă de jocuri perfecte pentru a petrece timpul alături de cei dragi! Echipa
CASA CORPULUI DIDACTIC BRĂILA PORTOFOLIU EVALUARE INFORMATICĂ ȘI TIC PENTRU GIMNAZIU CLASA A V-A Neamț SERIA 1 GRUPA 1 CURSANT: ALTERESCU V. IULIA-CRI
CASA CORPULUI DIDACTIC BRĂILA PORTOFOLIU EVALUARE INFORMATICĂ ȘI TIC PENTRU GIMNAZIU CLASA A V-A Neamț SERIA 1 GRUPA 1 CURSANT: ALTERESCU V. IULIA-CRISTINA-VANDANA LICEUL TEHNOLOGIC GH. RUSET ROZNOVANU
rules_ro
de Dirk Liekens (reguli in lb. română) În acest joc de strategie, jucătorii luptă pentru a obţine controlul asupra celor mai importante zone din Sumeria antică. Comercianţii sunt utilizaţi pentru a controla
EN_IV_2014_Lb_romana_Test_2_pt_minoritate_sarba
CENTRUL NAŢIONAL DE EVALUARE ŞI EXAMINARE EVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a 2014 Test 2 Limba română pentru elevii de la şcolile şi secţiile cu predare în limba sârbă Judeţul/sectorul... Localitatea...
Examenul de bacalaureat 2012
PROGRAMA PENTRU SIMULAREA EXAMENULUI DE BACALAUREAT 2019 LA DISCIPLINA MATEMATICĂ În cadrul examenului de Bacalaureat 2019, Programele de examen la disciplina Matematica se diferenţiază în funcţie de filiera,
Examenul de bacalaureat 2012
INSPECTORATUL Ș C O L A R J U D E Ț E A N C O V A S N A PROGRAMA PENTRU SIMULAREA EXAMENULUI DE BACALAUREAT 2015 LA DISCIPLINA MATEMATICĂ În cadrul examenului de Bacalaureat 2015, Programele de examen
PROIECT DIDACTIC
Plan de lecție Informații generale Obiectul: Matematică Clasa: a VII - a Durata: 50 min Mijloace TIC: calculatorul profesorului cu videoproiector,calculatoare pentru elevi Tema lecției: Aria triunghiului
E_d_Informatica_sp_SN_2014_bar_10_LRO
Examenul de bacalaureat naţional 2014 Proba E. d) Informatică Varianta 10 Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore. În rezolvările cerute,