DETERMINAREA CONSTANTEI RYDBERG

Documente similare
Olimpiada Națională de Astronomie şi Astrofizică Aprilie 2019 Analiza Datelor - Seniori Problema 1 - Quasar 3C273 Spectrul optic al quasarului 3C273 c

Microsoft Word - lucrarea 6

UNIVERSITATEA DE VEST DIN TIMIȘOARA FACULTATEA DE FIZICA CONCURSUL NAȚIONAL DE FIZICĂ CONSTANTIN SĂLCEANU 30 MARTIE 2019 Sunt obligatorii toate subiec

Probleme rezolvate de fizică traducere de Nicolae Coman după lucrarea

Cursul 12 (plan de curs) Integrale prime 1 Sisteme diferenţiale autonome. Spaţiul fazelor. Fie Ω R n o mulţime deschisă şi f : Ω R n R n o funcţie de

Microsoft Word - onf laborator subiect.doc

Bazele spectroscopiei si laserilor

2

Microsoft Word - L25Ro_Studiul efectului Hall_f_RF

Programul: IDEI Tipul proiectului: Proiecte de cercetare exploratorie Cod CNCSIS:1909/2009; contract 488/2009 Director de proiect: Prof. Viorica Flore

Microsoft Word - Tsakiris Cristian - MECANICA FLUIDELOR

Dorel LUCHIAN Gabriel POPA Adrian ZANOSCHI Gheorghe IUREA algebră geometrie clasa a VIII-a ediţia a V-a, revizuită mate 2000 standard EDITURA PARALELA

Noțiuni matematice de bază

IDESC, Universitatea Alexandru Ioan Cuza, Iasi Centrul Regional Iasi pentru Tineri Capabili de Performanta, Iasi C

Realizarea fizică a dispozitivelor optoeletronice

C10: Teoria clasică a împrăștierii Considerăm un potențial infinit în interiorul unui domeniu sferic de rază a și o particulă incidentă (Figura 1) la

MD.09. Teoria stabilităţii 1

Realizarea fizică a dispozitivelor optoeletronice

I

Microsoft Word - C05_Traductoare de deplasare de tip transformator

Microsoft Word - Programa finala olimpiadei matematica 2007 gimnaziu.doc

Microsoft Word - TIC5

Microsoft Word - lucr 1-5.doc

Vega142 Octombrie 2011 PG Autor: Radu Gherase Astroclubul Bucureşti

PRINCIPALELE REZULTATE OBTINUTE

Microsoft Word - 1_ILUMINATUL ELECTRIC_Marimi & unitati fotometrice_corectat_ulterior.doc

Pachete de lecţii disponibile pentru platforma AeL

Brosura laborator limba romana.cdr

IM - Imagistica Medicala

Institutul de Cercetări în Chimie Raluca Ripan Cluj-Napoca Tel: ; int 6489 Fax: Laboratorul Compusi Anorganici Dr. Laura MUREȘAN

Investeşte în oameni ! FONDUL SOCIAL EUROPEAN Programul Operaţional Sectorial pentru Dezvoltarea Resurselor Umane 2007 – Axa prioritară nr. 1 „

RecMat dvi

Laborator de Fotometrie si Compatibilitate Electromagnetica Competente si tarife Laborator acreditat conform SR EN ISO/CEI ELECTROMAGNETICA

Descoperiţi fantastica lume a universului! Telescop HD 1

2

Ministerul Educa iei i Cercet rii Serviciul Na ional de Evaluare i Examinare EXAMENUL DE BACALAUREAT Proba scris la Fizic Proba E: Specializare

Complemente de Fizica I Cursul 1

CATEDRA FIZIOLOGIA OMULUI ŞI BIOFIZICĂ Cerinţele unice pentru lucrările de laborator din ciclul 1, facultatea Medicina Preventiva. (anul universitar 2

COMENTARII FAZA JUDEŢEANĂ, 9 MARTIE 2013 Abstract. Personal comments on some of the problems presented at the District Round of the National Mathemati

Ministerul Educa iei i Cercet rii Serviciul Na ional de Evaluare i Examinare EXAMENUL DE BACALAUREAT Proba scris la Fizic Proba E: Specializare

E_d_fizica_teoretic_vocational_2019_bar_model_LRO_2

Microsoft Word - F.Paladi_TD_manual.doc

Slide 1

Gheorghe IUREA Adrian ZANOSCHI algebră geometrie clasa a VII-a ediţia a V-a, revizuită mate 2000 standard EDITURA PARALELA 45 Matematică. Clasa a VII-

METODE NUMERICE ÎN INGINERIE

CONCURSUL INTERLICEAL “TOPFIZ”

Laboratorul numarul 6 Reglarea turaţiei motorului asincron prin variația frecvenței de alimentare cu păstrarea raporului U/f constant Expresia turaţie

E_d_chimie_anorganica_2019_bar_model_LRO

UNIVERSITATEA DIN BUCUREŞTI FACULTATEA DE CHIMIE PLAN DE ÎNVĂŢĂMÂNT pentru CICLUL I - STUDII UNIVERSITARE DE LICENŢĂ PROMOȚIA Domeniul de li

Universitatea POLITEHNICA Bucureşti Facultatea de Ştiinţe Aplicate Valabil în anul universitar Specializarile: Matematica si informatica apl

PROGRAMA CONCURSULUI NAŢIONAL

Lecții de pregă,re la informa,că Admitere 2019 Tema: Discutarea problemelor date la ul,mele sesiuni de admitere Bogdan Alexe

PowerPoint Presentation

gaussx.dvi

Clustere şi impurităţi în sisteme complexe

Presentación de PowerPoint

Norma generală de apărare împotriva incendiilor din

Cursul 8 Funcţii analitice Vom studia acum comportarea şirurilor şi seriilor de funcţii olomorfe, cu scopul de a dezvălui o proprietate esenţială a ac

COMISIA NAȚIONALĂ PENTRU CONTROLUL ACTIVITĂȚILOR NUCLEARE RTT V Întrebari pentru examenul de obținere a permisului de exercitare pentru

Laborator 2

MECANICA FLUIDELOR

fc 1 distribuitoare hidraulice dn6.cdr

Raport stiintific

Microsoft Word - Programa_Evaluare_Nationala_2011_Matematica.doc

Realizarea fizică a dispozitivelor optoeletronice

Precizări la problema 2 Problema 2 presupune estimarea eficienţei luminoase pe timp de zi şi pe timp de noapte pentru o lungime de undă care nu coresp

PowerPoint Presentation

Prelegerea 3 În această prelegere vom învăţa despre: Clase speciale de latici: complementate. modulare, metrice, distributive şi 3.1 Semi-distributivi

Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică Gheorghe Asachi Iaşi, 2015 Analiză Matematică Lucian Maticiuc 1 / 29

Teoria legăturii chimice a evoluat paralel cu dezvoltarea chimiei: J.J. Berzelius a pus bazele legăturii ionice, A.M. Butlerov (1861) introduce, pentr

Ministerul Educaţiei şi Ştiinţei din Republica Moldova

GEOMORFOLOGIE LP

Microsoft Word - 2ardelean1.doc

Microsoft Word - DCE - lucrarea 5.doc

H.G.1028

Microsoft Word - Curs02

HOTARARE /08/2006 C.T.C.E. P. Neamt - LEGIS HOTĂRÂRE nr din 9 august 2006 privind cerinţele minime de securitate şi sănătate în munca re

INDICATORI AI REPARTIŢIEI DE FRECVENŢĂ

Subiectul 1

BARAJ NR. 1 JUNIORI FRANŢA ianuarie Fie x şi y două numere întregi astfel încât 5x + 6y şi 6x + 5y să fie pătrate perfecte. Arătaţi că

Universitatea Tehnică Gheorghe Asachi din Iași Facutatea de Electronică, Telecomunicații și Tehnologia Informației Referat MEMS Microsenzori de accele

Aminoacizi Aminoacizii sunt compuși organici naturali cu funcțiune mixtă, ce conțin în molecula lor grupări amino și grupări carboxil. Denumirea amino

plan inv Fizica lb maghiara

UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB 6 aprilie 2019 Proba scrisă la MATEMATICĂ NOTĂ IM

Microsoft Word - Matematika_kozep_irasbeli_javitasi_0911_roman.doc

Universitatea Tehnică Gheorghe Asachi, Iași Facultatea de Electronică, Telecomunicații și Tehnologia Informației Triangulaţia și aplicații (referat) P

Microsoft Word - PN204 - Raport faza 1 _site.doc

Secţiunea 7-8 începători Concurs online de informatică Categoria PROGRAMARE PROBLEMA 1 ID 100 puncte Calculatoarele trebuie să se recunoască în rețeau

Facultatea de Matematică Anul II Master, Geometrie Algebrică Mulţimi algebrice ireductibile. Dimensiune 1 Mulţimi ireductibile Propoziţia 1.1. Fie X u

Slide 1

GHERCĂ MAGDA CASA CORPULUI DIDACTIC BRĂILA PORTOFOLIU EVALUARE INFORMATICĂ ȘI TIC PENTRU GIMNAZIU CLASA A V-A Neamț SERIA 1 GRUPA 1 CURSANT: GHERCĂ G

rrs_12_2012.indd

Prelegerea 4 În această prelegere vom învăţa despre: Algebre booleene; Funcţii booleene; Mintermi şi cuburi n - dimensionale. 4.1 Definirea algebrelor

Realizarea fizică a dispozitivelor optoeletronice

Microsoft Word - Predimensionare_arbori.DOC

Instrucţiuni de asamblare USCĂTOARELE DE CEREALE ANTTI M06 3W CAPETELE CANALELOR DE AER 0,5 M (ro) ANTTI-TEOLLISUUS OY Koskentie 89 FI Ka

Microsoft Word - Instructiuni montaj si utilizare CRH6.doc

Transcriere:

UNIVERSITATEA "POLITEHNICA" BUCUREŞTI DEPARTAMENTUL DE FIZICĂ LABORATORUL DE FIZICA ATOMICA SI FIZICA NUCLEARA BN-03 B DETERMINAREA CONSTANTEI RYDBERG

DETERMINAREA CONSTANTEI RYDBERG. Scopul lucrării Determinarea constantei implicate în seriile spectrale ale atomilor hidrogenoizi.. Teoria lucrării Atomii fiecărui element chimic emit, atunci când sunt excitaţi (de exemplu într-o descărcare în gaz), un spectru optic caracteristic de radiaţii, astfel că fiecare element poate fi identificat după spectrul său. Aceasta este esenţa analizei spectrale calitative. De asemenea, atomii pot fi excitaţi prin absorbţie de radiaţie, spectrul de absorbţie fiind identic cu cel de emisie. Spectrele elementelor chimice sunt cu atât mai complicate, cu cât numărul lor de ordine Z este mai mare. Spectrele optice ale atomilor sunt datorate electronilor optici, adică electronilor ce se găsesc pe orbita periferică. Spectroscopiştii experimentatori au stabilit că toate liniile din diferitele serii spectrale ale atomului de hidrogen pot fi descrise printr-o relaţie generală care dă lungimea de undă a liniilor spectrale /-/: RH RH ν % mn = = T( m) T( n) = = R H () mn m n m n unde n şi m sunt numere întregi, T(m) şi T(n) sunt termeni spectrali, iar R H este constanta Rydberg. ν% mn este numărul de undă (cunoscut şi ca frecvenţă spaţială), definit ca inversul lungimii de undă mn. Relaţia () este formularea matematică a principiului de combinare Rydberg-Ritz : toate frecvenţele (sau numerele de undă) ale atomului de hidrogen pot fi scrise ca diferenţa a doi termeni spectrali iar dacă există în spectru frecvenţele (spaţiale) ν% mk şi ν% nk, atunci există de asemenea diferenţa lor ν% mn. Explicarea liniilor spectrale ale atomului de hidrogen a constituit o verificare de succes a teoriei atomului de hidrogen, dată de Niels Bohr în 93 (şi pentru care a primit premiul Nobel pentru fizică în 9). Bohr afirmă că nu există decât anumite orbite permise pentru electron, corespunzătoare unor stări staţionare. Astfel, el emite următoarele postulate: I. Atomul se poate afla într-un şir discret de stări staţionare, determinate de şirul discret E, E,, En de valori ale energiei totale. În aceste stări atomul nici nu emite, nici nu absoarbe energie. II. Energia atomului poate varia discontinuu, prin trecerea de la o stare staţionară de energie totală Em la altă stare staţionară de energie totală E 0 m. Frecvenţa fotonului absorbit sau emis este dată de relaţia: Em E 0 m ν =, () mn h procesul de absorbţie având loc în cazul în care electronul trece de pe o orbită mai apropiată de nucleu pe una mai depărtată, iar emisia atunci când parcurge drumul invers. III. Mărimea momentului cinetic al electronului pe orbitele circulare permise în jurul nucleului trebuie să fie egală cu un număr întreg de : h

M = mvr = nh (3) h unde h = este constanta lui Planck redusă, h este constanta lui Planck iar n se numeşte π număr cuantic principal şi poate lua valorile n =,, 3,... Astfel, considerând modelul planetar al atomului cu nucleul (protonul) imobil, se obţine că energia totală E n (compusă din energia cinetică a electronului în mişcarea sa în jurul nucleului şi energia electrostatică de interacţie coulombiană nucleu-electron) pe orbita n este cuantificată: E n e m = () 8ε h n 0 unde m este masa electronului, e este sarcina electronului şi ε 0 este permitivitatea electrică a vidului. Cea mai scăzută energie a atomului de hidrogen (numită şi stare fundamentală) corespunde numărului numărului cuantic n = şi are valoare de 3,6 ev. Ionizarea atomului de hidrogen, adică spargerea lui într-un nucleu şi un electron corespunde unei depărtări practic infinite dintre aceste particule, energia minimă a acestui sistem fiind zero. Energia minimă necesară pentru a ioniza atomul de hidrogen aflat în starea fundamentală se numeşte energie de ionizare şi are valoarea de 3,6 ev. În mecanica cuantică energia atomului de hidrogen, expresia (), se află prin integrarea ecuaţiei Schrödinger, fără a se mai introduce condiţia (3). Energia totală a atomului de hidrogen este negativă (ecuaţia ()), ceea ce exprimă faptul că electronul se află legat în câmpul electromagnetic al nucleului. Folosind relaţiile () şi () se obţine: me = 3 (5) mn 8ε0hc m n care comparată cu (), conduce la relaţia: me RH =, (6) 3 8 ε 0hc expresie obţinută în cazul modelului în care s-a considerat protonul imobil. Din relaţia () pot fi găsite toate lungimile de undă ale liniilor diferitelor serii spectrale ale hidrogenului. O serie spectrală reprezintă totalitatea liniilor spectrale care au un nivel energetic de bază comun (fig.). Astfel există seria Lyman la care nivelul energetic comun este corespunzător lui m= (în relaţia (5)), iar m, K şi are liniile în domeniul ultraviolet (adică seria Lyman conţine toate tranziţiile în care este prezent nivelul fundamental de energie); seria Balmer (vizibil) la care m = şi n = 3,, 5, 6, 7, (adică seria Balmer conţine toate tranziţiile în care este prezent primul nivel excitat de energie); seria Paschen la care m = 3 şi n =, 5, iar liniile spectrale au lungimile de undă corespunzătoare radiaţiilor din infraroşu etc. 3. Principiul experimentului În această lucrare se va studia seria spectrală Balmer, determinându-se lungimile de undă pentru liniile Hα, Hβ, Hγ, Hδ, Hε şi H (limita seriei Balmer). Astfel, liniile spectrale de mai sus ale hidrogenului înregistrate pe o placă fotografică (spectrogramă ) plasată în planul focal al unui spectroscop cu prismă sunt prezentate în partea de sus a figurii.

Pentru determinarea lungimilor de undă ale liniilor hidrogenului, se foloseşte un spectru cunoscut, înregistrat la acelaşi spectroscop şi în condiţii identice, al mercurului. Lungimile de undă ale liniilor mercurului, de la stânga la dreapta în spectrograma din figura, sunt 63., 6.3, 579.0, 577.0, 56., 9.6, 35.8, 3.7, 33.9, 07.8 şi 0.7 nm. Astfel, spectrul mercurului este folosit pentru etalonarea în lungimi de undă a spectrogramei. În cazul seriei Balmer, relaţia () devine: ν % n = = RH n n unde n = 3,,5,6, K (7) de unde rezultă constanta Rydberg: n RH = (8) n n ( ) Fig. 3

. Dispozitivul experimental Studierea spectrogramei se face cu un microscop. Măsuţa microscopului poate fi deplasată în plan orizontal, pe două direcţii perpendiculare, cu ajutorul a două şuruburi. Deplasarea în lungul spectrului permite măsurarea poziţiei unei linii spectrale pe o riglă gradată în mm folosind un vernier cu precizia de 0, mm. Pentru fixarea poziţiei liniei dorite, ocularul microscopului este prevăzut cu un fir reticular. Pentru efectuarea lucrării sunt necesare: spectrograma cu spectrul hidrogenului atomic vizibil (seria Balmer), cu spectrul mercurului şi un microscop. 5. Modul de lucru şi prelucrarea datelor experimentale Se identifică spectrul mercurului şi al hidrogenului privind întâi spectrograma cu ochiul liber şi apoi la microscop. Privind prin ocular, se potriveşte oglinda microscopului pentru a avea o bună iluminare a spectrogramei. Se deplasează măsuţa microscopilui în plan orizontal astfel încât zona de pe spectrogramă înconjurată cu un cerc din figura să fie pe axa obiectivului microscopului. Pentru a nu se sparge spectrograma, poziţia verticală iniţială a microscopului trebuie să fie cu obiectivul lipit de spectrogramă. Se ridică treptat tubul microscopului, până când liniile spectrale apar clare. Se verifică paralelismul între liniile spectrale şi firul reticular, aşezarea paralelă a firului reticular făcându-se prin rotirea ocularului. Se citesc pe rigla gradată (prin suprapunerea firului reticular cu fiecare linie) poziţiile x i ale celor linii ale mercurului şi se completează tabelul de mai jos. Atenţie : tabelul poate fi completat atât de la dreapta la stânga cât şi de la stânga la dreapta. Priviţi cu ochiul liber spectrograma aflată pe măsuţa microscopului (fără a o atinge) şi figura pentru a şti din care parte începeţi completarea tabelului. Tabelul : Etalonarea spectrogramei cu ajutorul spectrului mercurului (nm) 63. 6.3 579.0 577.0 56. 535. 35.8 3.7 33.9 07.8 0.7 x (mm) ( μ m Se citesc, de asemenea, pe rigla gradată poziţiile x j ale celor 6 linii din seria hidrogenului ( Hα, Hβ, Hγ, Hδ, Hε şi H ) şi se trec în tabelul. Tabelul : Determinarea spectrului hidrogelului (seria Balmer) şi a constantei Rydberg Linia x (mm) (nm) n R H σ H R H α H β H γ H δ H ε H R H

Se trasează pe hârtie milimetrică curba de etalonare = f ( x i ) pentru mercur. De fapt, curba de etalonare o constituie dependenţa x() dar pentru motive ce vor fi explicate în continuare, preferăm reprezentarea x). Am amintit că spectrograma a fost înregistrată cu un spectroscop cu prismă. Elementul dispersiv al spectroscopului prisma are un indice de refracţie a cărui dependenţă într-o formă simplificată este liniară în (formula lui Cauchy /5/). Poziţia unei linii spectrale pe spectrogramă este aproximativ proporţională cu indicele de refracţie al prismei adică, în cele din urmă, este liniară în (sau, echivalent, funcţia este liniară în x). Astfel, pe acelaşi grafic, pe axa verticală din dreapta, se reprezintă graficul = f ( x ) i. Astfel, această ultimă reprezentare permite o mai bună determinare a lungimilor de undă ale liniilor spectrale ale hidrogenului care se găsesc în afara domeniului acoperit de spectrul mercurului. Şi dependenţa x sau ( x ) poate fi considerată în sens extins curbă de etalonare. Având poziţiile x j ale celor 6 linii ale hidrogenului, se scot din curba de etalonare lungimile de undă ale liniilor Hα, Hβ, HγK necesare pentru calcularea constantei lui Rydberg. Se calculează constanta Rydberg conform relaţiei (8); valorile obţinute se trec în tabelul. σ = RH Se calculează valoarea medie 6 ( RH R i H ) i= 65 6 RH i R i= H = 6 şi rezultatul final se scrie sub forma şi deviaţia standard a valorii medii RH = RH ±σ R. H 6. Întrebări (întrebările -6 sunt facultative). Ce sunt liniile spectrale?. Ce este lungimea de undă? Dar numărul de undă? În ce relaţii se găsesc acestea cu frecvenţa radiaţiei? Dar cu energia radiaţiei? 3. Ce este o serie spectrală a hidrogenului? Câte linii spectrale conţine o serie spectrală? Ce este limita unei serii spectrale?. Ce este un termen spectral? 5. Ce reprezintă principiul de combinare Rydberg-Ritz în studiul liniilor spectrale emise de atomi? Care este utilitatea lui? Ce este mai simplu de cunoscut : liniile spectrale sau termenii spectrali? Justificaţi răspunsul. 5