Procesele biologice sunt acompaniate de reactii chimice

Documente similare
Biochimie - Curs Introducere Biochimia este literalmente o disciplină care studiază chimia vieții. Cu toate că se suprapune cu alte discipline

Aminoacizi Aminoacizii sunt compuși organici naturali cu funcțiune mixtă, ce conțin în molecula lor grupări amino și grupări carboxil. Denumirea amino

TOXICOLOGIE ORGANICĂ Sem. II Lector dr. Adriana Urdă Curs 5. Biotransformarea compușilor organici prin reacții metabolice (continuare). Reac

Sistema Qualità: Mod. SVF per la PAQ 6.1

E_d_chimie_organica_2019_bar_model_LRO

Procesele biologice sunt acompaniate de reactii chimice

UNIVERSITATEA POLITEHNICA DIN BUCUREŞTI FACULTATEA de CHIMIE APLICATĂ ŞI ŞTIINŢA MATERIALELOR Strada Gh. Polizu, nr. 1-7, sector 1, , Bucureşti,

PowerPoint Presentation

E_d_chimie_anorganica_2019_bar_model_LRO

Portofoliu suplimente alimentare vegleges.cdr

Laborator 2

Curs7_Lipide

Lucrare de laborator CHIMIE 2 : Determinarea ph-ului. LUCRARE DE LABORATOR NR. 1 DETERMINAREA ph-ului NUMELE STUDENTULUI/ANUL/GRUPA DATA EFECTUĂRII ph

1

Microsoft Word - Curs08

Curs8_sfingo-glico-lipide

OBSERVAȚIE Probele de organe trebuie să fie prelevate de la cadavru înainte de îmbalsămare, întrucât acest proces poate distruge sau diminua concentra

Ministerul Educaţiei şi Cercetării

ÎNCEPEM O NOUĂ ERĂ A FRUMUSEŢII

LEANSHAKE CĂPŞUNI CIOCOLATĂ CĂPŞUNI CIOCOLATĂ Zinzino LeanShake este un înlocuitor alimentar delicios şi nutritiv care permite scăderea în greutate 1.

MINISTERUL SĂNĂTĂŢII AL REPUBLICII MOLDOVA UNIVERSITATEA DE STAT DE MEDICINĂ ŞI FARMACIE NICOLAE TESTEMIŢANU Aprobată La şedinţa Consiliului Facultăţi

Universitatea Tehnică Gheorghe Asachi din Iași Facutatea de Electronică, Telecomunicații și Tehnologia Informației Referat MEMS Microsenzori de accele

fisa disciplinei bioanorganica

VI. Achiziția datelor în LabVIEW

DETERMINAREA CONSTANTEI RYDBERG

LICEUL DE CREATIVITATE ŞI INVENTICĂ PROMETEU-PRIM CONCURSUL DE CHIMIE ichemist Ediția a V-a, 17 noiembrie 2018 CODUL lucrării: Clasa a IX-a Timp de lu

Microsoft Word - Ghid Met prelev.doc

Bazele spectroscopiei si laserilor

fcic_admitere2017_chimie_organica_ro

AUTORIZAŢIE DE PUNERE PE PIAŢĂ NR. 6475/2014/ Anexa 1 Prospect Prospect: Informaţii pentru utilizator Aminoplasmal 100 g/l cu electroliţi solu

Microsoft Word - RST etapa I INSERP.doc

Teoria legăturii chimice a evoluat paralel cu dezvoltarea chimiei: J.J. Berzelius a pus bazele legăturii ionice, A.M. Butlerov (1861) introduce, pentr

Microsoft Word - Curs10

Acizi grași Acizii grași au în moleculă o catenă liniară cu un număr par de atomi de carbon ( n 4 ). Acizii grași saturați conțin numai legături simpl

CICLUL II STUDII UNIVERSITARE DE MASTER Domeniul INGINERIA PRODUSELOR ALIMENTARE Specializari: Expertiza produselor agroalimentare Controlul si expert

Investeşte în oameni ! FONDUL SOCIAL EUROPEAN Programul Operaţional Sectorial pentru Dezvoltarea Resurselor Umane 2007 – Axa prioritară nr. 1 „

Microsoft Word - 6 FIZIOLOGIE LICENTA MV 2017_SITE.docx

FIŞA DISCIPLINEI ANEXA nr. 3 la metodologie 1. Date despre program 1.1 Instituţia de învăţământ superior Universitatea Dunarea de Jos din Galati 1.2 F

EXEMPLE DE GRILE PENTRU EXAMENUL DE DIPLOMA SPECIALIZAREA BIOTEHNOLOGII AGRICOLE 2018 MICROBIOLOGIE 1. Gruparea cocilor in lanțuri lungi poartă denumi

Презентация PowerPoint

Calitate aer comprimat Masurarea calitatii aerului comprimat conform ISO 8573 Continut de ulei rezidual - particule - umezeala Masurare continut ulei

Microsoft Word - PN204 - Raport faza 1 _site.doc

ANATOMIE ŞI EMBRIOLOGIE - Regiunile topografice ale capului. Considerații anatomo-clinice. 2: 1-8, Regiunile topografice ale gâtului. Consider

AUTORIZAŢIE DE PUNERE PE PIAŢĂ NR. 9498/2016/01-02 Anexa 2 Rezumatul caracteristicilor produsului REZUMATUL CARACTERISTICILOR PRODUSULUI 1. DENUMIREA

FIŞA DISCIPLINEI 1. Date despre program 1.1 Instituţia de învăţământ superior Universitatea de Vest din Timişoara 1.2 Facultatea / Departamentul Facul

Olimpiada Națională de Astronomie şi Astrofizică Aprilie 2019 Analiza Datelor - Seniori Problema 1 - Quasar 3C273 Spectrul optic al quasarului 3C273 c

PA PROGRAMA ANALITIC RED: 02 DATA: PAG. 3/3 PROGRAMA ANALITIC PENTRU STUDEN II FACULT II MEDICIN I Denumirea cursului: Biochimie Codu

PowerPoint Presentation

UNIVERSITATEA DE VEST DIN TIMIȘOARA FACULTATEA DE FIZICA CONCURSUL NAȚIONAL DE FIZICĂ CONSTANTIN SĂLCEANU 30 MARTIE 2019 Sunt obligatorii toate subiec

Metodă nouă de separare a compuşilor enantiopuri utilizând anticorpi selectivi

Efectele dopajului si ale dimensionalitatii asupra proprietatilor magnetice, structurale si morfologice si dinamicii de spin in micro si nanostructuri

Microsoft Word - definitivat-chimie.doc

PRINCIPALELE REZULTATE OBTINUTE

Protocol clinic naţional Diabetul zaharat, Chişinău 2017 Anexa 6. Informaţie pentru pacientul cu diabet zaharat Diabetul zaharat este o boală cu evolu

Microsoft Word - ANEXA_IIa.doc

Worldwide Patient Product Information (WPPI)

Reticulul endoplasmic

IP Universitatea de Stat de Medicină și Farmacie Nicolae Testemițanu Catedra de biochimie și biochimie clinică BIOCHIMIE STRUCTURALĂ Ghid pentru lucră

GHID PENTRU ÎNGRIJIREA PISICILOR STERILIZATE ŞTIINŢA UNEI VIEŢI EXTRAORDINARE

CL2012R0432RO _cp 1..1

Institutul de Cercetări în Chimie Raluca Ripan Cluj-Napoca Tel: ; int 6489 Fax: Laboratorul Compusi Anorganici Dr. Laura MUREȘAN

Microsoft Word - DCE - lucrarea 5.doc

Biochimie - Curs Structura acizilor nucleici În orice organism acizii nucleici constituie o sursă care codează informaţia biologică. Forma şi

GUVERNUL REPUBLICII MOLDOVA H O T Ă R Î R E nr. din Chișinău Pentru aprobarea Regulamentului sanitar privind adaosul de vitamine și minerale, precum ș

CATEDRA FIZIOLOGIA OMULUI ŞI BIOFIZICĂ Cerinţele unice pentru lucrările de laborator din ciclul 1, facultatea Medicina Preventiva. (anul universitar 2

A TANTÁRGY ADATLAPJA

PowerPoint Presentation

T1_BAC

FLOSPERSE TM Agenti de dispersie

Laboratorul încercări chimice și măsurări instrumentale (fondat în a. 1965) Şef de laborator: Scurtu Raisa Tel: , , of r

EXEMPLE DE GRILE PENTRU EXAMENUL DE LICENTA SPECIALIZAREA BIOTEHNOLOGII AGRICOLE 2014 MICROBIOLOGIE 1. Mitocondriile drojdiilor au rol în: a. producer

Principiile deshidratarii legumelor şi fructelor

MINISTERUL SĂNĂTĂȚII, MUNCII ȘI PROTECȚIEI SOCIALE AL REPUBLICII MOLDOVA CENTRUL DE EXCELENȚĂ ÎN MEDICINĂ ȘI FARMACIE RAISA PACALO AGENDA FORMĂRII PRO

PRO_4804_ doc

Anexa nr. 2 FIŞA DISCIPLINEI 1. Date despre program 1.1 Instituţia de învăţământ superior Universitatea de Vest din Timişoara 1.2 Facultatea Fizică 1.

I. Tematica de concurs pentru posturile de asistent universitar pe perioadă determinată TEMATICA DE FIZIOLOGIE PENTRU CONCURSUL DE ASISTENT UNIVESITAR

Elaborarea de tehnologii originale de laborator/on-site pentru determinarea Hg, As şi Sb din probe de mediu şi alimentare prin CV-μCCP-AES şi HG-μCCP-

1

Deficitul de Mevalonat Kinază (DMK) (sau sindromul hiper IgD) Versiunea CE ESTE DMK 1.1

AUTORIZATIE DE PUNERE PE PIATĂ NR

PowerPoint Presentation

MULTIMETRU DIGITAL AX-585 INSTRUCŢIUNI DE UTILIZARE

Microsoft Word - Curs02

Microsoft Word - Curs07

Realizarea fizică a dispozitivelor optoeletronice

Microsoft Word - C05_Traductoare de deplasare de tip transformator

Microsoft Word - RAPORT STIINTIFIC 2017-website

Microsoft Word - Fisa disciplinei Met Bioc Biofiz Mod_2015.doc

Lista oficiala a analizelor

UNIVERSITATEA DIN BUCUREŞTI FACULTATEA DE CHIMIE PLAN DE ÎNVĂŢĂMÂNT pentru CICLUL I - STUDII UNIVERSITARE DE LICENŢĂ PROMOȚIA Domeniul de li

Microsoft Word - RST etapa II INSERP.doc

ACADEMIA DE ȘTIINȚE A MOLDOVEI INSTITUTUL DE CHIMIE Cu titlu de manuscris C.Z.U.: (043.3) ANGHEL LILIA ASPECTE FIZICO-CHIMICE ALE PROCES

GG_SOLAR_RO

Ovotransferina PC2. O proteina cu functii imunologice

Microsoft Word - Curs09

BAZA DE DATE INGREDIENTE AMELIORATE

Transcriere:

1.5. Monitorizarea activității enzimatice 1.5.1. Factori care guvernează activitatea catalitică Activitatea catalitică a enzimelor poate fi controlată de o serie de factori: ph, tăriea ionică, temperatura, de ioni sau de alte molecule. Influența ph-ului Activitatea unei enzime depinde de ph-ul mediului de reacție din două motive: prezența în centrul activ al enzimei de grupările donoare sau acceptoare de protoni și menținerea ansamblului structural enzimatic. Grupările acceptoare/donoare de protoni (Tabelul 1) pot fi titrate, dependențele activității enzimatice cu ph-ul au în majoritatea cazurilor o formă de clopot, cu un maxim la ph-ul optim. Profilul de ph optim poate fi privit ca o combinație de curbe de titrare a grupărilor încărcate care sunt esențiale pentru cataliză, majoritatea provenind din aminoacizii componenți ai enzimei. Cofactorii pot fi de asemenea influența acest profil. Un tip de grupare va fi activă în stare protonată, altele în stare deprotonată și de aceea curbele de titrare ale acestora formează părțile laterale ale profilului dependent de ph. De exemplu, o grupare carboxil poate fi activă în stare protonată și tranziția de la forma protonată la cea deprotonată (în domeniul de ph acid) formează partea din stânga a profilului, în timp ce deprotonarea unei grupări amino contribuie la partea din dreapta (de declin) a profilului. Dacă pentru fiecare zonă este responsabilă numai o singură grupare rezultă o curbă de titrare clasică cu un singur punct de inflexiune ce corespunde valorii pka a restului titrat. Această valoare a pka-ului poate servi la identificarea grupării implicate în mecanismul catalitic, dar trebuie luat în calcul și faptul că această valoare poate fi schimbată (cu 1-2 unități de ph) prin simplu fapt că acest aminoacid este parte integrantă a structurii tridimensionale a enzimei. În plus, în majoritatea situațiilor pot fi implicate (în actul enzimatic) mai multe resturi catalitice și profilul din acea zonă poate fi o suprapunere a unor curbe de titrare. Tabel 1. Valorile pka ale grupărilor funcționale din diverși aminoacizi Aminoacidul pka Acidul aspartic Acidul glutamic Histidina Cisteină Serină Tirozină Treonină Lizină Arginină 3,86 4,32 6,09 8,30 9,15 10,10 10,40 10,53 12,30 Cel mai adesea expunerea enzimei la valori extreme de ph poate conduce la schimbări structurale ireversibile (scăderea activității enzimatice). Majoritatea enzimelor au un ph optim în mediu neutru (într-un domeniu de ph 6,5-8,5). Enzimele care preferă condiții extreme, ca pepsina (la ph de aproximativ 1) și fosfataza alcalină (9-10), trebuie testate în domeniul de ph adecvat. Deoarece activitatea enzimatică este influențată de schimbările de ph, valoarea acestui parametru trebuie menținută constantă pe parcursul determinării. Pe de altă parte, 1

componentele din amestecul de testat sau soluția enzimei pot influența valoarea ph-ului. În unele situații reacția enzimatică poate determina un salt/o scădere a ph-ului și din acest motiv trebuie măsurată valoarea finală a acestuia la sfârșitul reacției. Profilele catalitice dependente de ph sunt în general reversibile. Când enzima este incubată la ph marginal, la care activitatea este minimă, aceasta va recăpăta activitatea maximă când este deplasată la ph-ul optim al acesteia. În schimb, procesele dependente de ph care privesc structura tridimensională a enzimei sunt cel mai adesea ireversibile. Un profil al stabilității în funcție de ph poate distinge între schimbările de ph reversibile și ireversibile. În acest context, cantități mici de enzimă sunt preincubate (de exemplu o oră) la valori de ph diferite, după care activitatea este măsurată la ph-ul optim. Activități identice sunt obținute atâta timp cât schimbările de ph sunt reversibile, dar după o schimbare ireversibilă enzima nu mai poate reveni la activitatea optimă. Curba de stabilitate a enzimei în funcție de ph se întinde pe un domeniu mai larg comparativ cu profilul ph-ului optim. Cum enzima are activitatea maximă la o valoare de ph optimă se va folosi o soluție tampon cu aceeași valoare de ph pentru majoritatea determinărilor de activitate enzimatică. Uneori, unele determinări enzimatice nu sunt efectuate la ph-ul optim. De exemplu, măsurătorile de activitate ale alcool dehidrogenazei se efectuează la ph alcalin (diferit de ph-ul optim) care permite deplasarea echilibrului de reacție spre produsul de reacție. Influența solventului, tăriei ionice și a soluțiilor tampon utilizate Solventul joacă un rol important pentru activitatea enzimatică. Enzimele legate sau conectate la membrana celulară preferă un mediu nepolar. De exemplu lipazele sunt enzime active în solvenți organici. Marea parte a enzimelor preferă mediul apos (celular) și din acest motiv sunt instabile și se denaturează în solvenți organici. Din acest motiv soluțiile apoase (tampon) sunt folosite exclusiv în determinările de activitate enzimatică. Oricum, în unele situații, prezența solvenților organici nu poate fi evitată. O serie de substrate enzimatice și metaboliți sunt insolubili în apă, în special la concentrații ridicate și din acest motiv trebuie dizolvate sub forma unor soluții stoc în solvenți mai puțin polari (etanol, acetonă, tetrahidrofuran sau DMSO). Cantități mici din aceste soluții de natură organică pot fi adăugate la soluțiile apoase folosite la determinările de activitate, iar enzima poate tolera aceste concentrații moderate (de remarcat faptul că se vor utiliza solvenți organici care sunt miscibili cu apa). Uneori, solvenții organici (etanolul) sunt folosiți drept agenți antimicrobieni sau pentru a micșora temperatura de înghețare. Tăria ionică potrivită pentru măsurarea activității enzimatice este dictată de molaritatea soluției tampon utilizate. Cel mai frecvent se folosește o soluție tampon cu o concentrație de 0,1 M, valoare care reprezintă o tărie ionică mică comparativ cu aceea întâlnită în celulă. O tărie ionică ridicată (1 M) poate conduce la inactivarea enzimei, cu unele excepții (enzimele provenite din organismele termofile și halofile). Natura ionilor din soluția tampon poate fi un factor determinant pentru inactivarea sau destabilizarea enzimelor. Soluțiile tampon având în componență substanțe de natura organică pot fi mai stabile, dar în majoritatea cazurilor trebuie căutat tamponul potrivit pentru fiecare enzima. De exemplu, în cazul folosirii fosfatului de potasiu trebuie să se știe faptul că tamponul are capacitate de legare pentru o serie de cationi divalenți. Tris (2-Amino-2- (hidroximetil)-propan-1,3-diolul), un alt compus folosit la prepararea soluțiilor tampon, 2

poate uneori dezactiva enzimele. Alături de compatibilitatea tampon-enzimă trebuie să se considere și capacitatea de tamponare optimă (între 1-2 unități de ph) a acestui compus. Influența temperaturii Ca și în cazul ph-ului nu se poate postula o temperatură ideală pentru toate reacțiile catalizate de enzime. De obicei, pentru o enzimă se va măsura activitatea la diferite valori ale temperaturii, menținând ph-ul constant (și în domeniul optim). De fapt, în acest caz intervin două procese. Odată cu creșterea temperaturii, viteza mișcării moleculelor (vitezei de reacție) crește cu un factor de 2-3 la fiecare creștere a temperaturii cu 10 grade. În schimb, odată cu creșterea temperaturii apare tendința enzimelor de a se denatura și implicit a se dezactiva. Procesul de denaturare a enzimelor depinde de doi factori: temperatură și timp. La temperaturi înalte are loc o inactivare rapidă, însă și la temperaturi moderate poate avea loc o inactivare mai lentă. De exemplu, alcool dehidrogenaza poate fi inactivată și la o temperatură de 37 ºC. Din acest motiv activitatea poate fi influențată de timpul scurs până la măsurarea activității. În majoritatea cazurilor se va încerca scurtarea timpului de procesare a unui extract enzimatic în scopul păstrării activității. În general se utilizează 3 temperaturi (25, 30 și 37 ºC). Comparativ cu catalizatorii chimici enzimele asistă/catalizează reacțiile biochimice în condiții fiziologice de temperatură. Modificarea temperaturii medului de incubare afectează viteza reacțiilor enzimatice prin modificarea stabilității enzimei, afinității acesteia pentru substrat sau față de alți compuși care influențează viteza reacțiilor enzimatice. Cofactorii enzimatici Cofactorii metalici Studiile cristalografice au dovedit faptul că enzimele sunt proteine cu lanțuri de 100-2500 de aminoacizi. Enzime ca chimiotripsina sau triozfosfat izomeraza (enzima care catalizează interconversia compușilor difosforilați cu 3 atomi de carbon) sunt active fără a avea nevoie de alți compuși/ioni. În general, pentru o activitate corespunzătoare, enzimele au nevoie de o componentă neproteică (cofactor). Un grup de cofactori sunt ionii metalici. În cele mai multe cazuri ionii metalici stabilizează conformația enzimei în forma catalitic activă. Un exemplu îl constituie fosforilaza, enzima care catalizează prima etapa de clivare a glicogenului din mușchii scheletici. Aceasta enzimă permite degradarea rezervelor de carbohidrați. Contracția mușchilor scheletici este o consecință a expulzării Ca 2+ din reticulul sarcoplasmatic fapt care duce la activarea fosforilazei (poate fi dictată și de hormoni-adrenalina) și implicit la producerea ATP-ului. Carboxipeptidazele, enzime care catalizează scindarea legăturii peptidice la capătul C-terminal al substratului, necesită ioni de zinc pentru activitatea catalitică. Îndepărtarea zincului (prin complexare cu EDTA) poate avea drept consecință inactivarea enzimei. Activitatea poate fi redobândită la adăugarea ionilor de zinc. Aldolaza si anhidraza carbonică necesită de asemenea ioni de zinc pentru o activitate catalitică corespunzătoare. Kinazele, enzime care transferă o grupare -fosforil de la ATP la o moleculă acceptor, necesită ionii de magneziu care se leagă, în acest caz, de substrat (ATP) și nu de enzimă (Figura 1, Pagina 3). 3

MgADP - Figura 1. Fosforilarea glucozei de către hexokinază. Enzima necesită ATP și ioni de magneziu Nucleaza din stafilococi, enzimă care hidrolizează ADN-ul si ARN-ul, leagă Ca 2+ un ion esențial pentru reacția enzimatică. Și ureaza conține ioni de nichel (Figura 2), fapt care a fost dovedit la 50 de ani de la cristalizare. Necesitatea prezenței acestor cofactori explică de ce organismele au nevoie de cantități mici din aceste molecule (ioni) în dieta lor. Natura metalo-enzimelor poate explica uneori efectele toxice ale metalelor grele asupra unor plante/organisme. De exemplu, ionii de Cd 2+ și Hg 2+ poate înlocui ionul de Zn 2+ din situsul catalitic al aceleiași enzime (din ARN polimeraza) determinând pierderea activității acesteia. Figura 2. Centru catalitic al ureazei Există și alte exemple în care ionii metalici sunt indispensabili enzimelor (Tabelul 2). Tabel 2. Exemple de ioni metalici necesari unor enzime Metalul Na K Mg Fe Zn Mo Cu Ni Enzima -D-glucohidrolaza din intestin Piruvat kinaza Hexokinaza, Piruvat-kinaza, Adenozintrifosfataza Catalaza, Peroxidaza, Nitrogenaza Alcooldehidrogenaza, Carboxipeptidaza Xantinoxidaza, Nitrogenaza Citocrom c oxidaza, Amin-oxidaza Ureaza Cofactorii organici A doua clasă de cofactori este reprezentată de cofactorii organici (marea partea sunt derivați din clasa vitaminelor B) ce interacționează slab cu apoenzimele. Între cele 4

două componente se formează legături slabe de tipul punților de hidrogen sau interacțiunilor hidrofobe. Cofactorii strâns legați (prin legături covalente, dimetilglicin dehidrogenaza DMGDH și sarcozin dehidrogenaza SARDH conțin FAD care este covalent legat în poziția 8 la un rest de histidină al acestor enzime) poartă denumirea de grupări prostetice. O enzimă care conține un cofactor sau o grupare prostetică poartă numele de holoenzimă, iar una în care cofactorul este îndepărtat apoenzimă (Figura 3). Dacă din holoenzimă este îndepărtat cofactorul dispare activitatea catalitică. Moleculele mici sau speciile care se leagă reversibil la o enzimă se numesc liganzi (acest termen general poate include substratul, compuși analogi cu structura asemănătoare substratului, inhibitorul sau ionul/ionii metalici). Figura 3. Prezența cofactorului este definitorie pentru activitatea enzimatică Așadar, cofactorii se pot lega necovalent sau covalent de apoenzime. De exemplu, FAD-ul este o grupare prostetică pentru lipoamid-dehidrogenaza și coenzimă pentru D- amino-acid-oxidaza (DAAO). Din punct de vedere structural coenzimele se împart în 4 clase: - coenzime de natură alifatică; - coenzime de natură aromatică; - coenzime cu structura nucleozidică; - coenzime cu structura nucleotidică. Principalele coenzime de natură alifatică sunt glutationul, acidul lipoic și acidul ascorbic. O enzimă dependentă de glutation este glutation-homocistin-transdehidrogenaza și permite formarea punților disulfidice prin conversia cisteinei la cistină. Glutationul redus (G-SH) poate fi oxidat reversibil sub acțiunea glutation-reductazei. Decarboxilarea oxidativă a acidului piruvic din țesuturile animale este realizată cu ajutorul unui complex enzimatic. Una dintre enzime este dihidrolipo-transacetilaza care conține amida acidului lipoic drept cofactor. Conversia DOP-aminei la noradrenalină este catalizată de DOP-amin-hidroxilaza care necesită acid ascorbic, O2 și ioni de cupru. Tirozina poate fi metabolizată la acid homogentizinic care se elimină pe cale renală. Ultima etapă a acestei secvențe metabolice este catalizată de o enzima specifică care este dependentă de ascorbat. Majoritatea carboxilazelor, enzime implicate în procesul de încorporare a CO2, necesită biotină, care este atașată printr-o legătură de tip amidic de enzimă (între gruparea COOH a biotinei și o grupare -amino din catena laterală a unei lizine din secvența polipeptidică). Propionil-CoA-carboxilaza, o enzimă care este dependentă de biotină, catalizează transformarea propionil-coa în metil-malonil-coa. Tiamin difosfatul joacă rol de coenzimă pentru transcetolaza, enzima care intervine în metabolismul glucidic (catalizeză transferul unui fragment de doi atomi de carbon din molecula fructozo-6- fosfatului pe scheletul hidrocarbonat al glicerinaldehid-3-fosfatului). În cazul aminotransferazelor, enzime implicate în interconversia oxo-acizilor și aminoacizilor, piridoxal fosfatul este legat de enzimă sub forma unei baze Schiff. 5

Decarboxilarea aminoacizilor, reacție din care rezultă aminele, se realizează cu ajutorul unor enzime specifice care sunt dependente de piridoxal fosfat. Histidindecarboxilaza este o enzimă care convertește histidina la histamina, substanță cu proprietăți vasopresoare și care reglează secreția de HCl din stomac prin stoparea secreției de gastrina. Ornitin-decarboxilaza catalizează reacția de decarboxilare a ornitinei cu formare de putresceină (precusorul poliamidelor spermidină și spermină esențiale pentru reglarea celulară și pentru interacțiunile dintre acizii nucleici). Serindezaminaza și serin-hidroximetil-transferaza, enzime care convertesc serina la piruvat, respectiv glicocol, au piridoxalfosfatul (Figura 4) în calitate de cofactor. Pteroenzimele folosesc drept cofactor acidul tetrahidrofolic pentru transferarea grupărilor formil, hidroximetil. Nucleozid-fosfații îndeplinesc rol de cofactori în reacțiile de transfosforilare, enzimele ce catalizează aceste procese fiind denumite kinaze. Nucleozid-fosfații conțin în moleculă atât baze purinice cât și pirimidinice. Piridoxal-fosfatul biotina Acidul lipoic Tiamin difosfat Figura 4. Structurile chimice ale unor cofactori prezenți în enzime Unii cofactori sunt atașati tranzitoriu la diverse enzime și astfel joacă rol de cosubstrat. Nicotin adenin dinucleotidul (NAD +, Figura 5 ) și nicotin adenin dinucleotid fosfatul (NADP + ) sunt exemple de cosubstrate. De exemplu, NAD + este un agent de oxidare în reacția catalizată de alcool dehidrogenaza (ADH): Figura 5. Reacție enzimatică asistată de alcool dehidrogenaza (ADH) 6

1.5.2. Metode de determinare a activității enzimatice Pentru măsurarea activității enzimatice a unor enzime din ser sau extracte de origine animală, vegetală sau microbiană trebuie să se țină cont și de reacția chimică mediată de aceste proteine. Viteza de reacție este o măsură a reacției enzimatice. Pentru fiecare test enzimatic este necesar un control riguros al unor anumiți parametri (ph, temperatură, presiune, prezența unor ioni metalici - Ca 2+, Zn 2+, Mn 2+, Mg 2+ sau a unor compuși tiolici respectiv a unei concentrații optime de substrat), care sunt specifici pentru fiecare enzimă. Majoritatea testelor enzimatice se efectuează la concentrații ale substratului care să permită saturarea enzimei (de obicei această concentrație trebuie să fie de 10-20 de ori mai mare decât constanta Michaelis). Viteza maximă, vmax, este un alt parametru enzimatic. Unitatea de măsură pentru activitatea enzimatică este U. 1U este cantitatea de enzimă care în condiții optime experimentale transformă 1 mol de substrat pe minut. Pentru enzimele din ser activitatea enzimatică este exprimată în U/L. O altă unitate de măsură pentru activitatea enzimatică este katalul. 1Katal (Kat) reprezintă activitatea catalitică echivalentă cu transformarea unui mol de substrat pe secundă. c = 1U/L = 16.67 nkat/l A l (nkat = 10-9 mol/s) Determinarea activității catalitice se face cu ajutorul unui test optic. Modificarea concentrației substratului în decursul reacției enzimatice poate fi monitorizată pe baza modificării absorbanței (turbidității, fluorescenței sau a altui parametru). Prin intermediul legii Lambert-Beer poate fi calculată concentrația: unde: A - absorbanța; - coeficient molar de extincție; l lungimea cuvei; c concentrația. Activitatea enzimatica = modificari timp = c min = A min l În diagnoza clinică activitatea enzimatică din ser se exprimă în U/L și se calculează astfel: Activitatea pe litru ser = A min l Volumul total din cuva Volumul de enzima Pentru calcularea activității enzimatice este necesară cunoașterea volumului cuvei respectiv al probei și lungimea de undă la care absoarbe un compus (format sau consumat în decursul reacției enzimatice). Dat fiind faptul că volumul cuvei este 1 ml expresia de sus trebuie înmulțită cu factorul 1000. Adesea activitatea enzimatică se poate exprima și în µmol min -1 L -1. În comparație cu metodele bazate pe absorbție (inclusiv turbidimetrice) determinările fluorimetrice prezintă o sensibilitate crescută (cu circa două ordine de magnitudine), dar aceste metode sunt mult mai delicate (datorită posibilelor interferențe; necesită reactivi cu puritate deosebită). Limitarea metodelor fluorimetrice este dată în 7

special de numărul relativ mic de compuși mici (fluorofori) care prezintă fenomenul de emisie. În conformitate cu teoria, în momentul în care o moleculă absoarbe fotoni, unul dintre electronii acesteia trece pe un nivel energetic superior (stare excitată). La revenirea în starea fundamentală molecula emite lumină. Datorită pierderilor de energie, lumina emisă are întotdeauna lungimea de undă mai mare decât aceea a luminii excitate. Dintre compușii naturali și metaboliți doar câțiva (flavinele, triptofanul-respectiv proteinele în care este prezent acest aminoacid) prezintă emisie detectabilă. Acizii nucleici, nucleozidele, nucleotidele (AMP, ATP) sau NAD(P) nu prezintă emisie, dar formele cofactorilor reduși (NAD(P)H) emit lumina. Din acest motiv unele teste enzimatice pentru dehidrogenaze pot fi efectuate pe baza acestor proprietăți. Alături de compușii menționați, un număr restrâns de metaboliți (acidul antranilic, acizii biliari sau proteina fluorescentă) prezintă emisie semnificativă. Pentru a utiliza această metodă pentru o serie mai largă de aplicații se folosesc cromofori artificiali (derivați de fluoresceină, rezorufină sau cumarină). O particularitate a fluorescenței este aceea că intensitatea și maximul picului de emisie al unei molecule depinde de polaritatea mediului în care aceasta se află. Astfel, după legarea covalentă sau necovalentă a altor componente (de exemplu substrat) sau a enzimei, spectrele de fluorescență pot avea profile diferite. Un exemplu îl constituie umbeliferona (7-hidroxi-cumarina) care prin atașarea la lipide sau carbohidrați (cu rol de substrat, Figura 6) poate fi utilizată la determinări enzimatice în care scindarea substratului poate fi vizualizată fluorimetric prin eliberearea produsului de reacție rezultat. De asemenea, măsurătorile fluorimetrice pot servi la studiul modificării conformaționale a enzimelor după legarea substratului (ligandului). Figura 6. Reacție enzimatică utilizată pentru măsurarea activității β-galactozidazei Enzima asistă scindarea lactozei (dizaharid) la glucoză și galactoză 8